68 research outputs found

    Optimal diagnostic approach for using CT-derived quantitative flow ratio in patients with stenosis on coronary computed tomography angiography

    Get PDF
    Background: Coronary computed tomography angiography (CCTA)-derived quantitative flow ratio (CT-QFR) is an on-site non-invasive technique estimating invasive fractional flow reserve (FFR). This study assesses the diagnostic performance of using most distal CT-QFR versus lesion-specific CT-QFR approach for identifying hemodynamically obstructive coronary artery disease (CAD).Methods: Prospectively enrolled de novo chest pain patients (n ​= ​445) with ≥50 ​% visual diameter stenosis on CCTA were referred for invasive evaluation. On-site CT-QFR was analyzed post-hoc blinded to angiographic data and obtained as both most distal (MD-QFR) and lesion-specific CT-QFR (LS-QFR). Abnormal CT-QFR was defined as ≤0.80. Hemodynamically obstructive CAD was defined as invasive FFR ≤0.80 or ≥70 ​% diameter stenosis by 3D-quantitative coronary angiography.Results: In total 404/445 patients had paired CT-QFR and invasive analyses of whom 149/404 (37 ​%) had hemodynamically obstructive CAD. MD-QFR and LS-QFR classified 188 (47 ​%) and 165 (41 ​%) patients as abnormal, respectively. Areas under the receiver-operating characteristic curve for MD-QFR was 0.83 vs. 0.85 for LS-QFR, p ​= ​0.01. Sensitivities for MD-QFR and LS-QFR were 80 ​% (95%CI: 73-86) vs. 77 ​% (95%CI: 69-83), p ​= ​0.03, respectively, and specificities were 73 ​% (95%CI: 67-78) vs. 80 ​% (95%CI: 75-85), p ​< ​0.01, respectively. Positive predictive values for MD-QFR and LS-QFR were 63 ​% vs. 69 ​%, p ​< ​0.01, respectively, and negative predictive values for MD-QFR and LS-QFR were 86 ​% vs. 85 ​%, p ​= ​0.39, respectively).Conclusion: Using a lesion-specific CT-QFR approach has superior discrimination of hemodynamically obstructive CAD compared to a most distal CT-QFR approach. CT-QFR identified most cases of hemodynamically obstructive CAD while a normal CT-QFR excluded hemodynamically obstructive CAD in the majority of patients

    Prognostic value of microvascular resistance and its association to fractional flow reserve:a DEFINE-FLOW substudy

    Get PDF
    OBJECTIVE: This study aimed to evaluate the prognostic value of hyperemic microvascular resistance (HMR) and its relationship with hyperemic stenosis resistance (HSR) index and fractional flow reserve (FFR) in stable coronary artery disease. METHODS: This is a substudy of the DEFINE-FLOW cohort (NCT02328820), which evaluated the prognosis of lesions (n=456) after combined FFR and coronary flow reserve (CFR) assessment in a prospective, non-blinded, non-randomised, multicentre study in 12 centres in Europe and Japan. Participants (n=430) were evaluated by wire-based measurement of coronary pressure, flow and vascular resistance (ComboWire XT, Phillips Volcano, San Diego, California, USA). RESULTS: Mean FFR and CFR were 0.82±0.10 and 2.2±0.6, respectively. When divided according to FFR and CFR thresholds (above and below 0.80 and 2.0, respectively), HMR was highest in lesions with FFR>0.80 and CFR<2.0 (n=99) compared with lesions with FFR≤0.80 and CFR≥2.0 (n=68) (2.92±1.2 vs 1.91±0.64 mm Hg/cm/s, p<0.001). The FFR value was proportional to the ratio between HMR and the HMR+HSR (total resistance), 95% limits of agreement (−0.032; 0.019), bias (−0.003±0.02) and correlation (r(2)=0.98, p<0.0001). Cox regression model using HMR as continuous parameter for target vessel failure showed an HR of 1.51, 95% CI (0.9 to 2.4), p=0.10. CONCLUSIONS: Increased HMR was not associated with a higher rate of adverse clinical events, in this population of mainly stable patients. FFR can be equally well expressed as HMR/HMR+HSR, thereby providing an alternative conceptual formulation linking epicardial severity with microvascular resistance. TRIAL REGISTRATION NUMBER: NCT02328820

    Characterization of quantitative flow ratio and fractional flow reserve discordance using doppler flow and clinical follow-up

    Get PDF
    The physiological mechanisms of quantitative flow ratio and fractional flow reserve disagreement are not fully understood. We aimed to characterize the coronary flow and resistance profile of intermediate stenosed epicardial coronary arteries with concordant and discordant FFR and QFR. Post-hoc analysis of the DEFINE-FLOW study. Anatomical and Doppler-derived physiological parameters were compared for lesions with FFR+QFR− (n = 18) vs. FFR+QFR+ (n = 43) and for FFR−QFR+ (n = 34) vs. FFR−QFR− (n = 139). The association of QFR results with the two-year rate of target vessel failure was assessed in the proportion of vessels (n = 195) that did not undergo revascularization. Coronary flow reserve was higher [2.3 (IQR: 2.1–2.7) vs. 1.9 (IQR: 1.5–2.4)], hyperemic microvascular resistance lower [1.72 (IQR: 1.48–2.31) vs. 2.26 (IQR: 1.79–2.87)] and anatomical lesion severity less severe [% diameter stenosis 45.5 (IQR: 41.5–52.5) vs. 58.5 (IQR: 53.1–64.0)] for FFR+QFR− lesions compared with FFR+QFR+ lesions. In comparison of FFR−QFR+ vs. FFR-QFR- lesions, lesion severity was more severe [% diameter stenosis 55.2 (IQR: 51.7–61.3) vs. 43.4 (IQR: 35.0–50.6)] while coronary flow reserve [2.2 (IQR: 1.9–2.9) vs. 2.2 (IQR: 1.9–2.6)] and hyperemic microvascular resistance [2.34 (IQR: 1.85–2.81) vs. 2.57 (IQR: 2.01–3.22)] did not differ. The agreement and diagnostic performance of FFR using hyperemic stenosis resistance (> 0.80) as reference standard was higher compared with QFR and coronary flow reserve. Disagreement between FFR and QFR is partly explained by physiological and anatomical factors. Clinical Trials Registration https://www.clinicaltrials.gov; Unique identifier: NCT01813435. Graphical abstract: Changes in central physiological and anatomical parameters according to FFR and QFR match/mismatch quadrants

    Rationale and design of SAVI-AoS:A physiologic study of patients with symptomatic moderate aortic valve stenosis and preserved left ventricular ejection fraction

    Get PDF
    Background: Moderate aortic valve stenosis occurs twice as often as severe aortic stenosis (AS) and carries a similarly poor prognosis. Current European and American guidelines offer limited insight into moderate AS (MAS) patients with unexplained symptoms. Measuring valve physiology at rest while most patients experience symptoms during exertion might represent a conceptual limitation in the current grading of AS severity. The stress aortic valve index (SAVI) may delineate hemodynamically significant AS among patients with MAS. Objectives: To investigate the diagnostic value of SAVI in symptomatic MAS patients with normal left ventricular ejection fraction (LVEF ≥ 50%): aortic valve area (AVA) > 1 cm2 plus either mean valve gradient (MG) 15–39 mmHg or maximal aortic valve velocity (AOV max) 2.5–3.9 m/s. Short-term objectives include associations with symptom burden, functional capacity, and cardiac biomarkers. Long-term objectives include clinical outcomes. Methods and results: Multicenter, non-blinded, observational cohort. AS severity will be graded invasively (aortic valve pressure measurements with dobutamine stress testing for SAVI) and non-invasively (echocardiography during dobutamine and exercise stress). Computed tomography (CT) of the aortic valve will be scored for calcium, and hemodynamics simulated using computational fluid dynamics. Cardiac biomarkers and functional parameters will be serially monitored. The primary objective is to see how SAVI and conventional measures (MG, AVA and Vmax) correlate with clinical parameters (quality of life survey, 6-minute walk test [6MWT], and biomarkers). Conclusions: The SAVI-AoS study will extensively evaluate patients with unexplained, symptomatic MAS to determine any added value of SAVI versus traditional, resting valve parameters

    Impact of acute coronary syndrome on clinical outcomes after revascularization with the dual-therapy CD34 antibody-covered sirolimus-eluting Combo stent and the sirolimus-eluting Orsiro stent

    Get PDF
    OBJECTIVES: To compare the efficacy and safety of the dual-therapy CD34 antibody-covered sirolimus-eluting Combo stent (DTS) and the sirolimus-eluting Orsiro stent (O-SES) in patients with and without acute coronary syndrome (ACS) included in the SORT OUT X study.BACKGROUND: The incidence of target lesion failure (TLF) after treatment with modern drug-eluting stents has been reported to be significantly higher in patients with ACS when compared to patients without ACS. Whether the results from the SORT OUT X study apply to patients with and without ACS remains unknown.METHODS: In total, 3146 patients were randomized to stent implantation with DTS (n = 1578; ACS: n = 856) or O-SES (n = 1568; ACS: n = 854). The primary end point, TLF, was a composite of cardiac death, target-lesion myocardial infarction (MI), or target lesion revascularization (TLR) within 1 year.RESULTS: At 1 year, the rate of TLF was higher in the DTS group compared to the O-SES group, both among patients with ACS (6.7% vs. 4.1%; incidence rate ratio: 1.65 [95% confidence interval, CI: 1.08-2.52]) and without ACS (6.0% vs. 3.2%; incidence rate ratio: 1.88 [95% CI: 1.13-3.14]). The differences were mainly explained by higher rates of TLR, whereas rates of cardiac death and target lesion MI did not differ significantly between the two stent groups in patients with or without ACS CONCLUSION: Compared to the O-SES, the DTS was associated with a higher risk of TLF at 12 months in patients with and without ACS. The differences were mainly explained by higher rates of TLR.</p

    Danish study of Non-Invasive Testing in Coronary Artery Disease 3 (Dan-NICAD 3):study design of a controlled study on optimal diagnostic strategy

    Get PDF
    Introduction Current guideline recommend functional imaging for myocardial ischaemia if coronary CT angiography (CTA) has shown coronary artery disease (CAD) of uncertain functional significance. However, diagnostic accuracy of selective myocardial perfusion imaging after coronary CTA is currently unclear. The Danish study of Non-Invasive testing in Coronary Artery Disease 3 trial is designed to evaluate head to head the diagnostic accuracy of myocardial perfusion imaging with positron emission tomography (PET) using the tracers 82Rubidium (82Rb-PET) compared with oxygen-15 labelled water PET (15O-water-PET) in patients with symptoms of obstructive CAD and a coronary CT scan with suspected obstructive CAD.Methods and analysis This prospective, multicentre, cross-sectional study will include approximately 1000 symptomatic patients without previous CAD. Patients are included after referral to coronary CTA. All patients undergo a structured interview and blood is sampled for genetic and proteomic analysis and a coronary CTA. Patients with possible obstructive CAD at coronary CTA are examined with both 82Rb-PET, 15O-water-PET and invasive coronary angiography with three-vessel fractional flow reserve and thermodilution measurements of coronary flow reserve. After enrolment, patients are followed with Seattle Angina Questionnaires and follow-up PET scans in patients with an initially abnormal PET scan and for cardiovascular events in 10 years.Ethics and dissemination Ethical approval was obtained from Danish regional committee on health research ethics. Written informed consent will be provided by all study participants. Results of this study will be disseminated via articles in international peer-reviewed journal.Trial registration number NCT04707859

    Changes in microvascular resistance following percutaneous coronary intervention - From the ILIAS global registry

    Get PDF
    BACKGROUND: Microvascular resistance (MR) has prognostic value in acute and chronic coronary syndromes following percutaneous coronary intervention (PCI), however anatomic and physiologic determinants of the relative changes of MR and its association to target vessel failure (TVF) has not been investigated previously. This study aims to evaluate the association between changes in MR and TVF. METHODS: This is a sub-study of the Inclusive Invasive Physiological Assessment in Angina Syndromes (ILIAS) registry which is a global multi-centre initiative pooling lesion-level coronary pressure and flow data. RESULTS: Paired pre-post PCI haemodynamic data were available in n = 295 vessels out of n = 828 PCI treated patients and of these paired data on MR was present in n = 155 vessels. Vessels were divided according to increase vs. decrease % in microvascular resistance following PCI (ΔMR % ≤ 0 vs. ΔMR > 0%). Decreased microvascular resistance ΔMR % ≤ 0 occurred in vessels with lower pre-PCI fractional flow reserve (0.67 ± 0.15 vs. 0.72 ± 0.09 p = 0.051), coronary flow reserve (1.9 ± 0.8 vs. 2.6 ± 1.8 p 0%. In a cox regression model ΔMR % > 0 was associated with increased rate of TVF (hazard ratio 95% CI 3.6 [1.2; 10.3] p = 0.018). CONCLUSION: Increased MR post-PCI was associated with lesions of less severe hemodynamic influence at baseline and higher rates of TVF at follow-up

    Microvascular resistance reserve: diagnostic and prognostic performance in the ILIAS registry

    Get PDF
    Aims: The microvascular resistance reserve (MRR) was introduced as a means to characterize the vasodilator reserve capacity of the coronary microcirculation while accounting for the influence of concomitant epicardial disease and the impact of administration of potent vasodilators on aortic pressure. This study aimed to evaluate the diagnostic and prognostic performance of MRR. Methods and results: A total of 1481 patients with stable symptoms and a clinical indication for coronary angiography were included from the global ILIAS Registry. MRR was derived as a function of the coronary flow reserve (CFR) divided by the fractional flow reserve (FFR) and corrected for driving pressure. The median MRR was 2.97 [Q1-Q3: 2.32-3.86] and the overall relationship between MRR and CFR was good [correlation coefficient (Rs) = 0.88, P < 0.005]. The difference between CFR and MRR increased with decreasing FFR [coefficient of determination (R2) = 0.34; Coef. - 2.88, 95% confidence interval (CI): -3.05 - 2.73; P < 0.005]. MRR was independently associated with major adverse cardiac events (MACE) at 5-year follow-up [hazard ratio (HR) 0.78; 95% CI 0.63-0.95; P = 0.024] and with target vessel failure (TVF) at 5-year follow-up (HR 0.83; 95% CI 0.76-0.97; P = 0.047). The optimal cut-off value of MRR was 3.0. Based on this cut-off value, only abnormal MRR was significantly associated with MACE and TVF at 5-year follow-up in vessels with functionally significant epicardial disease (FFR <0.75). Conclusion: MRR seems a robust indicator of the microvascular vasodilator reserve capacity. Moreover, in line with its theoretical background, this study suggests a diagnostic advantage of MRR over other indices of vasodilatory capacity in patients with hemodynamically significant epicardial coronary artery disease

    Impact of sex on the assessment of the microvascular resistance reserve

    Get PDF
    Background: The microvascular resistance reserve (MRR) is an innovative index to assess the vasodilatory capacity of the coronary circulation while accounting for the presence of concomitant epicardial disease. The MRR has shown to be a valuable diagnostic and prognostic tool in the general coronary artery disease (CAD) population. However, considering the fundamental aspects of its assessment and the unique hemodynamic characteristics of women, it is crucial to provide additional considerations for evaluating the MRR specifically in women. Aim: The aim of this study was to assess the diagnostic and prognostic applicability of the MRR in women and assess the potential differences across different sexes. Methods: From the ILIAS Registry, we enrolled all patients with a stable indication for invasive coronary angiography, ensuring complete physiological and follow-up data. We analyzed the diagnostic value by comparing differences between sexes and evaluated the prognostic value of the MRR specifically in women, comparing it to that in men. Results: A total of 1494 patients were included of which 26% were women. The correlation between MRR and CFR was good and similar between women (r = 0.80, p < 0.005) and men (r = 0.81, p < 0.005). The MRR was an independent and important predictor of MACE in both women (HR 0.67, 0.47–0.96, p = 0.027) and men (HR 0.84, 0.74–0.95, p = 0.007). The optimal cut-off value for MRR in women was 2.8 and 3.2 in men. An abnormal MRR similarly predicted MACE at 5-year follow-up in both women and men. Conclusion: The MRR seems to be equally applicable in both women and men with stable coronary artery disease
    • …
    corecore