81 research outputs found
Hard Thermal Loops, Gauged WZNW Action and the Energy of Hot Quark-Gluon Plasma
The generating functional for hard thermal loops in QCD is rewritten in terms
of a gauged WZNW action by introducing an auxiliary field. This shows in a
simple way that the contribution of hard thermal loops to the energy of the
quark-gluon plasma is positive.Comment: 9 pages, CU-TP 60
Hard Thermal Loops, Static Response and the Composite Effective Action
First, we investigate the static non-Abelian Kubo equation. We prove that it
does not possess finite energy solutions; thereby we establish that gauge
theories do not support hard thermal solitons. A similar argument shows that
"static" instantons are absent. In addition, we note that the static equations
reproduce the expected screening of the non-Abelian electric field by a gauge
invariant Debye mass m=gT sqrt((N+N_F/2)/3). Second, we derive the non-Abelian
Kubo equation from the composite effective action. This is achieved by showing
that the requirement of stationarity of the composite effective action is
equivalent, within a kinematical approximation scheme, to the condition of
gauge invariance for the generating functional of hard thermal loops.Comment: 17 pages, MIT preprint CTP#2261. An Appendix [including one
(appended) PS figure] presenting a numerical analysis of the static solutions
has been included. A note relating our approach to alternative ones has been
added. We have also added references and comments in Section II
A Simple Derivation of the Hard Thermal Loop Effective Action
We use the background field method along with a special gauge condition, to
derive the hard thermal loop effective action in a simple manner. The new point
in the paper is to relate the effective action explicitly to the S-matrix from
the onset.Comment: 11 pages, Latex; lost text after sect. 2 reinserte
High Temperature Response Functions and the Non-Abelian Kubo Formula
We describe the relationship between time-ordered and retarded response
functions in a plasma. We obtain an expression, including the proper
-prescription, for the induced current due to hard thermal loops in
a non-Abelian theory, thus giving the non-Abelian generalization of the Kubo
formula. The result is closely related to the eikonal for a Chern-Simons theory
and is relevant for a gauge-invariant description of Landau damping in the
quark-gluon plasma at high temperature.Comment: 14 pages in LaTeX, MIT CTP #2205 and CU-TP #59
Polarization Vectors, Doublet Structure and Wigner's Little Group in Planar Field Theory
We establish the equivalence of the Maxwell-Chern-Simons-Proca model to a
doublet of Maxwell-Chern-Simons models at the level of polarization vectors of
the basic fields using both Lagrangian and Hamiltonian formalisms. The analysis
reveals a U(1) invariance of the polarization vectors in the momentum space.
Its implications are discussed. We also study the role of Wigner's little group
as a generator of gauge transformations in three space-time dimensions.Comment: LaTex, 30 pages, no figure
Spontaneous Symmetry Breaking for Scalar QED with Non-minimal Chern-Simons Coupling
We investigate the two-loop effective potential for both minimally and
non-minimally coupled Maxwell-Chern-Simons theories. The non-minimal gauge
interaction represents the magnetic moment interaction between a charged scalar
and the electromagnetic field. In a previous paper we have shown that the two
loop effective potential for this model is renormalizable with an appropriate
choice of the non-minimal coupling constant. We carry out a detailed analysis
of the spontaneous symmetry breaking induced by radiative corrections. As long
as the renormalization point for all couplings is chosen to be the true minimum
of the effective potential, both models predict the presence of spontaneous
symmetry breaking. Two loop corrections are small compared to the one loop
result, and thus the symmetry breaking is perturbatively stable.Comment: Revtex 25 pages, 9 figure
Thermal matter and radiation in a gravitational field
We study the one-loop contributions of matter and radiation to the
gravitational polarization tensor at finite temperatures. Using the
analytically continued imaginary-time formalism, the contribution of matter is
explicitly given to next-to-leading () order. We obtain an exact form for
the contribution of radiation fields, expressed in terms of generalized Riemann
zeta functions. A general expression is derived for the physical polarization
tensor, which is independent of the parametrization of graviton fields. We
investigate the effective thermal masses associated with the normal modes of
the corresponding graviton self-energy.Comment: 32 pages, IFUSP/P-107
Effective QED Actions: Representations, Gauge Invariance, Anomalies and Mass Expansions
We analyze and give explicit representations for the effective abelian vector
gauge field actions generated by charged fermions with particular attention to
the thermal regime in odd dimensions, where spectral asymmetry can be present.
We show, through function regularization, that both small and large
gauge invariances are preserved at any temperature and for any number of
fermions at the usual price of anomalies: helicity/parity invariance will be
lost in even/odd dimensions, and in the latter even at zero mass. Gauge
invariance dictates a very general ``Fourier'' representation of the action in
terms of the holonomies that carry the novel, large gauge invariant,
information. We show that large (unlike small) transformations and hence their
Ward identities, are not perturbative order-preserving, and clarify the role of
(properly redefined) Chern-Simons terms in this context. From a powerful
representation of the action in terms of massless heat kernels, we are able to
obtain rigorous gauge invariant expansions, for both small and large fermion
masses, of its separate parity even and odd parts in arbitrary dimension. The
representation also displays both the nonperturbative origin of a finite
renormalization ambiguity, and its physical resolution by requiring decoupling
at infinite mass. Finally, we illustrate these general results by explicit
computation of the effective action for some physical examples of field
configurations in the three dimensional case, where our conclusions on finite
temperature effects may have physical relevance. Nonabelian results will be
presented separately.Comment: 36 pages, RevTeX, no figure
Transport Theory of Massless Fields
Using the Schwinger-Keldysh technique we discuss how to derive the transport
equations for the system of massless quantum fields. We analyse the scalar
field models with quartic and cubic interaction terms. In the model
the massive quasiparticles appear due to the self-interaction of massless bare
fields. Therefore, the derivation of the transport equations strongly resembles
that one of the massive fields, but the subset of diagrams which provide the
quasiparticle mass has to be resummed. The kinetic equation for the finite
width quasiparticles is found, where, except the mean-field and collision
terms, there are terms which are absent in the standard Boltzmann equation. The
structure of these terms is discussed. In the massless model the
massive quasiparticles do not emerge and presumably there is no transport
theory corresponding to this model. It is not surprising since the
model is anyhow ill defined.Comment: 32 pages, no macro
Chern-Simons Theory and the Quark-Gluon Plasma
The generating functional for hard thermal loops in QCD is important in
setting up a resummed perturbation theory, so that all terms of a given order
in the coupling constant can be consistently taken into account. It is also the
functional which leads to a gauge invariant description of Debye screening and
plasma waves in the quark-gluon plasma. We have recently shown that this
functional is closely related to the eikonal for a Chern-Simons gauge theory.
In this paper, this relationship is explored and explained in more detail,
along with some generalizations.Comment: 28 pages (4 Feynman diagrams not included, available upon request
- …