35 research outputs found

    Stress and Corticosteroids Modulate Muscarinic Long Term Potentiation (mLTP) in the Hippocampus

    Get PDF
    Stress influences synaptic plasticity, learning and memory in a steroid hormone receptor dependent manner. Based on these findings it has been proposed that stress could be a major risk factor for the development of cognitive decline and dementia. Interestingly, evidence has been provided that stress also affects muscarinic, i.e., acetylcholine (ACh)-mediated neurotransmission. To learn more about the impact of stress and steroids on synaptic plasticity, in this study, we investigated the effects of stress on muscarinic long term potentiation (mLTP). We report that multiple, unpredictable exposure to stress depresses carbachol (0.5 μM)-induced mLTP, while this effect of stress is not observed in hippocampal slices prepared from mice exposed only to a single stressful procedure. Furthermore, we demonstrate that activation of distinct steroid hormone receptors is involved in stress-mediated alterations of mLTP. Activation of mineralocorticoid receptors (MR) promotes mLTP, while glucocorticoid receptor (GR) activity impairs mLTP. These effects of multiple unpredictable stress on mLTP are long-lasting since they are detected even two weeks after the last stressful experience. Thus, multiple unpredictable events rather than a single stressful experience affect mLTP in a steroid hormone receptor dependent manner, suggesting that chronic unpredictable stress can lead to lasting alterations in hippocampal cholinergic plasticity

    Blocking Thrombin Significantly Ameliorates Experimental Autoimmune Neuritis

    Get PDF
    Thrombin and its protease-activated receptor 1 (PAR1) are potentially important in peripheral nerve inflammatory diseases. We studied the role of thrombin and PAR1 in rat experimental autoimmune neuritis (EAN), a model of the human Guillain-Barré syndrome (GBS). EAN was induced by bovine peripheral myelin with complete Freund's adjuvant (CFA). Thrombin activity in the sciatic nerves, clinical scores and rotarod performance were measured. Thrombin activity in the sciatic nerve was elevated in EAN compared to CFA control rats (sham rats) (p ≤ 0.004). The effect of blocking the thrombin-PAR1 pathway was studied using the non-selective thrombin inhibitor N-Tosyl-Lys-chloromethylketone (TLCK), and the highly specific thrombin inhibitor N-alpha 2 naphtalenesulfonylglycyl 4 amidino-phenylalaninepiperidide (NAPAP). In-vitro TLCK and NAPAP significantly inhibited specific thrombin activity in EAN rats sciatics (p<0.0001 for both inhibitors). Treatment with TLCK 4.4 mg/kg and NAPAP 69.8 mg/kg significantly improved clinical and rotarod scores starting at day 12 and 13 post immunization (DPI12, DPI13) respectively (p < 0.0001) compared to the untreated EAN rats. In nerve conduction studies, distal amplitude was significantly lower in EAN compared to sham rats (0.76 ± 0.34 vs. 9.8 ± 1.2, mV, p < 0.0001). Nerve conduction velocity was impaired in EAN rats (23.6 ± 2.6 vs. sham 43 ± 4.5, m/s p = 0.01) and was normalized by TLCK (41.2 ± 7.6 m/s, p < 0.05). PAR1 histology of the sciatic node of Ranvier indicated significant structural damage in the EAN rats which was prevented by TLCK treatment. These results suggest the thrombin-PAR1 pathway as a possible target for future intervention in GBS

    Cannabidiol Regulates Long Term Potentiation Following Status Epilepticus: Mediation by Calcium Stores and Serotonin

    No full text
    Epilepsy is a devastating disease, with cognitive and emotional consequences that are not curable. In recent years, it became apparent that cannabinoids help patients to cope with epilepsy. We have studied the effects of cannabidiol (CBD) on the ability to produce long term potentiation (LTP) in stratum radiatum of CA1 region of the mouse hippocampus. Exposure to seizure-producing pilocarpine reduced the ability to generate LTP in the slice. Pre-exposure to CBD prevented this effect of pilocarpine. Furthermore, CBD caused a marked increase in ability to generate LTP, an effect that was blocked by calcium store antagonists as well as by a reduction in serotonin tone. Serotonin, possibly acting at a 5HT1A receptor, or fenfluramine (FFA), which causes release of serotonin from its native terminals, mimicked the effect of CBD. It is proposed that CBD enhances non-NMDA LTP in the slice by facilitating release of serotonin from terminals, consequently ameliorating the detrimental effects of pilocarpine

    Ischemic stroke in PAR1 KO mice: Decreased brain plasmin and thrombin activity along with decreased infarct volume.

    No full text
    BackgroundIschemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia.MethodsA permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices.ResultsSignificantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, pConclusionsPAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke

    Prolonged Systemic Inflammation Alters Muscarinic Long-Term Potentiation (mLTP) in the Hippocampus

    No full text
    The cholinergic system plays a fundamental role in learning and memory. Pharmacological activation of the muscarinic receptor M1R potentiates NMDA receptor activity and induces short-term potentiation at the synapses called muscarinic LTP, mLTP. Dysfunction of cholinergic transmission has been detected in the settings of cognitive impairment and dementia. Systemic inflammation as well as neuroinflammation has been shown to profoundly alter synaptic transmission and LTP. Indeed, intervention which is aimed at reducing neuroinflammatory changes in the brain has been associated with an improvement in cognitive functions. While cognitive impairment caused either by cholinergic dysfunction and/or by systemic inflammation suggests a possible connection between the two, so far whether systemic inflammation affects mLTP has not been extensively studied. In the present work, we explored whether an acute versus persistent systemic inflammation induced by LPS injections would differently affect the ability of hippocampal synapses to undergo mLTP. Interestingly, while a short exposure to LPS resulted in a transient deficit in mLTP expression, a longer exposure persistently impaired mLTP. We believe that these findings may be involved in cognitive dysfunctions following sepsis and possibly neuroinflammatory processes

    The role of thrombin in the pathogenesis of diabetic neuropathy.

    No full text
    Diabetic neuropathy is common and disabling despite glycemic control. Novel neuroprotective approaches are needed. Thrombin and hypercoagulability are associated with diabetes and nerve conduction dysfunction. Our aim was to study the role of thrombin in diabetic neuropathy. We measured thrombin activity by a biochemical assay in streptozotocin (STZ)-induced diabetic neuropathy in male Sprague-Dawley rats. Neuropathy severity was assessed by thermal latency and nerve conduction measures. Thermal latencies were longer in diabetic rats, and improved with the non-specific serine-protease inhibitor Tosyl-L-lysine-chloromethyl ketone (TLCK) treatment (p<0.01). The tail nerve of diabetic rats showed slow conduction velocity (p˂0.01), and interestingly, increased thrombin activity was noted in the sciatic nerve (p˂0.001). Sciatic nodes of Ranvier and the thrombin receptor, protease activated receptor 1 (PAR1) reactivity showed abnormal morphology in diabetic animals by immunofluorescence staining (p<0.0001). Treatment of diabetic animals with either the specific thrombin inhibitor, N-alpha 2 naphtalenesulfonylglycyl alpha-4 amidino-phenylalaninepiperidide (NAPAP) or TLCK preserved normal conduction velocity, (p˂0.01 and p = 0.01 respectively), and prevented disruption of morphology (p˂0.05 and p˂0.03). The results establish for the first time an association between diabetic neuropathy and excessive activation of the thrombin pathway. Treatment of diabetic animals with thrombin inhibitors ameliorates both biochemical, structural and electrophysiological deficits. The thrombin pathway inhibition may be a novel neuroprotective therapeutic target in the diabetic neuropathy pathology

    Complement and Coagulation System Crosstalk in Synaptic and Neural Conduction in the Central and Peripheral Nervous Systems

    No full text
    Complement and coagulation are both key systems that defend the body from harm. They share multiple features and are similarly activated. They each play individual roles in the systemic circulation in physiology and pathophysiology, with significant crosstalk between them. Components from both systems are mapped to important structures in the central nervous system (CNS) and peripheral nervous system (PNS). Complement and coagulation participate in critical functions in neuronal development and synaptic plasticity. During pathophysiological states, complement and coagulation factors are upregulated and can modulate synaptic transmission and neuronal conduction. This review summarizes the current evidence regarding the roles of the complement system and the coagulation cascade in the CNS and PNS. Possible crosstalk between the two systems regarding neuroinflammatory-related effects on synaptic transmission and neuronal conduction is explored. Novel treatment based on the modulation of crosstalk between complement and coagulation may perhaps help to alleviate neuroinflammatory effects in diseased states of the CNS and PNS

    Neuroprotective Effect of Glatiramer Acetate on Neurofilament Light Chain Leakage and Glutamate Excess in an Animal Model of Multiple Sclerosis

    No full text
    Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35&ndash;55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35&ndash;55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death. In EAE-affected mice, axonal damage prevails from the early disease phase, as revealed by analysis of neurofilament light (NFL) leakage into the sera along the disease duration, as well as by immunohistological examination. Elevation of interstitial glutamate concentrations measured in the cerebrospinal fluid (CSF) implies that glutamate excess plays a role in the damage processes inflicted by this disease. GA applied as a therapeutic regimen to mice with apparent clinical symptoms significantly reduces the pathological manifestations, namely apoptotic cell death, NFL leakage, histological tissue damage, and glutamate excess, thus corroborating the neuroprotective consequences of this treatment

    Thrombin Inhibition Reduces the Expression of Brain Inflammation Markers upon Systemic LPS Treatment

    No full text
    Systemic inflammation and brain pathologies are known to be linked. In the periphery, the inflammation and coagulation systems are simultaneously activated upon diseases and infections. Whether this well-established interrelation also counts for neuroinflammation and coagulation factor expression in the brain is still an open question. Our aim was to study whether the interrelationship between coagulation and inflammation factors may occur in the brain in the setting of systemic inflammation. The results indicate that systemic injections of lipopolysaccharide (LPS) upregulate the expression of both inflammatory and coagulation factors in the brain. The activity of the central coagulation factor thrombin was tested by a fluorescent method and found to be significantly elevated in the hippocampus following systemic LPS injection (0.5 ± 0.15 mU/mg versus 0.2 ± 0.03 mU/mg in the control). A panel of coagulation factors and effectors (such as thrombin, FX, PAR1, EPCR, and PC) was tested in the hippocampus, isolated microglia, and N9 microglia cell by Western blot and real-time PCR and found to be modulated by LPS. One central finding is a significant increase in FX expression level following LPS induction both in vivo in the hippocampus and in vitro in N9 microglia cell line (5.5 ± 0.6- and 2.3 ± 0.1-fold of increase, resp.). Surprisingly, inhibition of thrombin activity (by a specific inhibitor NAPAP) immediately after LPS injection results in a reduction of both the inflammatory (TNFα, CXL9, and CCL1; p<0.006) and coagulation responses (FX and PAR1; p<0.004) in the brain. We believe that these results may have a profound clinical impact as they might indicate that reducing coagulation activity in the setting of neurological diseases involving neuroinflammation may improve disease outcome and survival
    corecore