10 research outputs found
Humans Lack iGb3 Due to the Absence of Functional iGb3-Synthase: Implications for NKT Cell Development and Transplantation
The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope GalĪ±(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign GalĪ±(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation
CD8+ TĀ cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity
To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRĪ±Ī² repertoires and promiscuous Ī±Ī²-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRĪ±Ī² diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses
Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161)
Background: Many immunologically important interactions are mediated by leukocyte recognition of carbohydrates via cell surface receptors. Uncharacterized receptors on human natural killer (NK) cells interact with ligands containing the terminal Gal alpha(1,3)Gal xenoepitope. The aim of this work was to isolate and characterize carbohydrate binding proteins from NK cells that bind alpha Gal or other potential xenoepitopes, such as N-acetyllactosamine (NAcLac), created by the deletion of alpha 1,3galactosyltransferase (GT) in animals. Methods and results: Initial analysis suggested the human C-type lectin NKRP1A bound to a pool of glycoconjugates, the majority of which contained the terminal Gal alpha(1,3)Gal epitope. This was confirmed by high level binding of cells expressing NKRP1A to mouse laminin, which contains a large number of N-linked oligosaccharides with the Gal alpha(1,3)Gal structure. The consequence of removing the terminal alpha Gal was then investigated. Elevated NAcLac levels were observed on thymocytes from GT(-/-) mice. Exposing NAcLac on laminin, by alpha-galactosidase treatment, resulted in a significant increase in NKRP1A binding. Conclusions: NKRPIA binds to the alpha Gal epitope. Moreover, exposing NAcLac by removal of alpha Gal resulted in an increase in binding. This may be relevant in the later phases of xenotransplant rejection if GT(-/-) pigs, like GT(-/-) mice, display increased NAcLac expression
Prolonged Xenograft Survival Induced by Inducible Costimulator-Ig is Associated With Increased Forkhead Box P3+ Cells
Background: Blockade of the inducible costimulator (ICOS) pathway has been shown to prolong allograft survival; however, its utility in xenotransplantation is unknown. We hypothesize that local expression of ICOS-Ig by the xenograft will suppress the T-cell response resulting in significant prolonged graft survival. METHODS.: Pig iliac artery endothelial cells (PIEC) secreting ICOS-Ig were generated and examined for the following: (1) inhibition of allogeneic and xenogeneic proliferation of primed T cells in vitro and (2) prolongation of xenograft survival in vivo. Grafts were examined for Tregs by flow cytometry and cytokine levels determined by quantitative reverse-transcriptase polymerase chain reaction. Results: Soluble ICOS-Ig markedly decreased allogeneic and xenogeneic primed T-cell proliferation in a dose-dependent manner. PIEC-ICOS-Ig grafts were significantly prolonged compared with wild-type grafts (median survival, 34 and 12 days, respectively) with 20% of PIEC-ICOS-Ig grafts surviving more than 170 days. Histological examination showed a perigraft cellular accumulation of Forkhead box P3 (Foxp3) cells in the PIEC-ICOS-Ig grafts, these were also shown to be CD3+CD4+CD25+. Survival of wild-type PIEC grafts in a recipient simultaneously transplanted with PIEC-ICOS-Ig were also prolonged, with a similar accumulation of Foxp3 cells at the periphery of the graft demonstrating ICOS-Ig induces systemic graft prolongation. However, this prolongation was specific for the priming xenograft. Intragraft cytokine analysis showed an increase in interleukin-10 levels, suggesting a potential role in induction/function of CD4+CD25+Foxp3+ cells. Conclusions: This study demonstrates prolonged xenograft survival by local expression of ICOS-Ig, we propose that the accumulation of CD4+CD25+Foxp3+ cells at the periphery of the graft and secretion of interleukin-10 is responsible for this novel observation
Australian Donation and Transplantation Biobank: A Research Biobank Integrated Within a Deceased Organ and Tissue Donation Program
Background. We aimed to facilitate the donation of tissue samples for research by establishing a centralized system integrated in the organ donation program for collection, storage, and distribution of samples (the Australian Donation and Transplantation Biobank [ADTB]).
Methods. Feasibility of a research biobank integrated within the deceased organ and tissue donation program was assessed. DonateLife Victoria sought consent for ADTB donation after consent was received for organ donation for transplantation from the donorās senior available next of kin. ADTB samples were collected during donation surgery and distributed fresh to researchers or stored for future research. The main outcome measures were ADTB donation rates, ADTB sample collection, ADTB sample use, and to identify ethical considerations.
Results. Over 2 y, samples were collected for the ADTB from 69 donors (28% of 249 donors). Samples were obtained from the spleen (n = 59, 86%), colon (n = 57, 83%), ileum (n = 56, 82%), duodenum (n = 55, 80%), blood (n = 55, 80%), bone marrow (n = 55, 80%), skin (n = 54, 78%), mesenteric lymph nodes (n = 56, 81%), liver (n = 21, 30%), lung (n = 29, 42%), and lung-draining lymph node (n = 29, 42%). Heart (n = 20), breast (n = 1), and lower urinary tract (n = 1) samples were obtained in the second year. Five hundred fifty-six samples were used in 19 ethics-approved research projects spanning the fields of immunology, microbiology, oncology, anatomy, physiology, and surgery.
Conclusions. The integration of routine deceased donation and transplantation activities with a coordinated system for retrieval and allocation of donor samples for use in a range of research projects is feasible and valuable
Immune responses in COVID-19 respiratory tract and blood reveal mechanisms of disease severity
ABSTRACT Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients
SARS-CoV-2 infection results in immune responses in the respiratory tract and peripheral blood that suggest mechanisms of disease severity
Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-Ī±2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19