1,008 research outputs found

    CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours

    Get PDF
    We have recently shown that the CHEK2*1100delC mutation acts as a low penetrance breast cancer susceptibility allele. To investigate if other CHEK2 variants confer an increased risk of breast cancer, we have screened an affected individual with breast cancer from 68 breast cancer families. Five of these individuals were found to harbour germline variants in CHEK2. Three carried the 1100delC variant (4%). One of these three individuals also carried the missense variant, Arg180His. In the other two individuals, missense variants, Arg117Gly and Arg137Gln, were identified. These two missense variants reside within the Forkhead-associated domain of CHEK2, which is important for the function of the expressed protein. None of these missense variants were present in 300 healthy controls. Microdissected tumours with a germline mutation showed loss of the mutant allele suggesting a mechanism for tumorigenesis other than a loss of the wild type allele. This study provides further evidence that sequence variation in CHEK2 is associated with an increased risk of breast cancer, and implies that tumorigenesis in association with CHEK2 mutations does not involve loss of the wild type allele

    The value of rapid functional assays of germline p53 status in LFS and LFL families

    Get PDF
    We have tested two rapid assays of p53 function, namely the apoptotic assay and the FASAY as means of detecting germline p53 mutations in members of Li–Fraumeni and Li–Fraumeni-like families. Results of the functional assays have been compared with direct sequencing of all 11 exons of the p53 gene. The results show good agreement between the two functional assays and between them and sequencing. No false-positives or negatives were seen with either functional assay although the apoptotic assay gave one borderline result for an individual without a mutation. As an initial screen the apoptotic assay is not only rapid but inexpensive and very simple to perform. It would be expected to detect any germline defect that leads to loss of p53 function. The apoptotic assay could be ideal as a means of prescreening large numbers of samples and identifying those that require further investigation. The FASAY detects mutations in exons 4–10, is rapid and distinguishes between functionally important and silent mutations. © 2000 Cancer Research Campaig
    • …
    corecore