16 research outputs found

    Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability

    No full text
    Objectives The emergence of MDR-TB, coupled with shrinking antibiotic pipelines, has increased demands for new antimicrobials with novel mechanisms of action. Antimicrobial peptides have increasingly been explored as promising alternatives to antibiotics, but their inherent poor in vivo stability remains an impediment to their clinical utility. We therefore systematically evaluated unnatural amino acid-modified peptides to design analogues with enhanced anti-mycobacterial activities. Methods Anti-mycobacterial activities were evaluated in vitro and intracellularly against drug-susceptible and MDR isolates of Mycobacterium tuberculosis using MIC, killing efficacy and intracellular growth inhibition studies. Toxicity profiles were assessed against mammalian cells to verify cell selectivity. Anti-mycobacterial mechanisms were investigated using microfluidic live-cell imaging with time-lapse fluorescence microscopy and confocal laser-scanning microscopy. Results Unnatural amino acid incorporation was well tolerated without an appreciable effect on toxicity profiles and secondary conformations of the synthetic peptides. The modified peptides also withstood proteolytic digestion by trypsin. The all D-amino acid peptide, i(llkk)2i (II-D), displayed superior activity against all six mycobacterial strains tested, with a 4-fold increase in selectivity index as compared with the unmodified L-amino acid peptide in broth. II-D effectively reduced the intracellular bacterial burden of both drug-susceptible and MDR clinical isolates of M. tuberculosis after 4 days of treatment. Live-cell imaging studies demonstrated that II-D permeabilizes the mycobacterial membrane, while confocal microscopy revealed that II-D not only permeates the cell membrane, but also accumulates within the cytoplasm. Conclusions Unnatural amino acid modifications not only decreased the susceptibility of peptides to proteases, but also enhanced mycobacterial selectivity

    BCRP expression does not result in resistance to STX140 in vivo, despite the increased expression of BCRP in A2780 cells in vitro after long-term STX140 exposure

    Get PDF
    The anti-proliferative and anti-angiogenic properties of the endogenous oestrogen metabolite, 2-methoxyoestradiol (2-MeOE2), are enhanced in a series of sulphamoylated derivatives of 2-MeOE2. To investigate possible mechanisms of resistance to these compounds, a cell line, A2780.140, eightfold less sensitive to the 3,17-O,O-bis-sulphamoylated derivative, STX140, was derived from the A2780 ovarian cancer cell line by dose escalation. Other cell lines tested did not develop STX140 resistance. RT–PCR and immunoblot analysis demonstrated that breast cancer resistance protein (BCRP) expression is dramatically increased in A2780.140 cells. The cells are cross-resistant to the most structurally similar bis-sulphamates, and to BCRP substrates, mitoxantrone and doxorubicin; but they remain sensitive to taxol, an MDR1 substrate, and to all other sulphamates tested. Sensitivity can be restored using a BCRP inhibitor, and this pattern of resistance is also seen in a BCRP-expressing MCF-7-derived cell line, MCF-7.MR. In mice bearing wild-type (wt) and BCRP-expressing tumours on either flank, both STX140 and mitoxantrone inhibited the growth of the MCF-7wt xenografts, but only STX140 inhibited growth of the MCF-7.MR tumours. In conclusion, STX140, a promising orally bioavailable anti-cancer agent in pre-clinical development, is highly efficacious in BCRP-expressing xenografts. This is despite an increase in BCRP expression in A2780 cells in vitro after chronic dosing with STX140

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity

    No full text
    The escalating threat of antimicrobial resistance has increased pressure to develop novel therapeutic strategies to tackle drug-resistant infections. Antimicrobial peptides have emerged as a promising class of therapeutics for various systemic and topical clinical applications. In this study, the de novo design of α-helical peptides with idealized facial amphiphilicities, based on an understanding of the pertinent features of protein secondary structures, is presented. Synthetic amphiphiles composed of the backbone sequence (X1Y1Y2X2)n, where X1 and X2 are hydrophobic residues (Leu or Ile or Trp), Y1 and Y2 are cationic residues (Lys), and n is the number repeat units (2 or 2.5 or 3), demonstrated potent broad-spectrum antimicrobial activities against clinical isolates of drug-susceptible and multi-drug resistant bacteria. Live-cell imaging revealed that the most selective peptide, (LKKL)3, promoted rapid permeabilization of bacterial membranes. Importantly, (LKKL)3 not only suppressed biofilm growth, but effectively disrupted mature biofilms after only 2 h of treatment. The peptides (LKKL)3 and (WKKW)3 suppressed the production of LPS-induced pro-inflammatory mediators to levels of unstimulated controls at low micromolar concentrations. Thus, the rational design strategies proposed herein can be implemented to develop potent, selective and multifunctional α-helical peptides to eradicate drug-resistant biofilm-associated infections

    Integrated pharmacokinetic–pharmacodynamic modeling to evaluate empiric carbapenem therapy in bloodstream infections

    No full text
    Tze-Peng Lim,1,2 Reyna Wang,1 Gang Quan Poh,3 Tse-Hsien Koh,4 Thean-Yen Tan,5 Winnie Lee,1 Jocelyn Qi-Min Teo,1 Yiying Cai,1 Thuan-Tong Tan,6 Pui Lai Rachel Ee,3 Andrea L Kwa1,3,7 1Department of Pharmacy, Singapore General Hospital, Singapore, Singapore; 2SingHealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore; 3Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore; 4Department of Microbiology, Singapore General Hospital, Singapore, Singapore; 5Department of Laboratory Medicine, Changi General Hospital, Singapore, Singapore; 6Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore; 7Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore Objectives: Treatment for nosocomial bloodstream infections (BSI) caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) is challenging. Rising antimicrobial resistance, especially in extended spectrum beta-lactamase production, inadvertently increases empiric carbapenem consumption. Three antipseudomonal carbapenems (imipenem, meropenem [MER], and doripenem [DOR]) are available commercially against MDR GNB in Singapore. The study aims to determine the most optimal empiric carbapenem dosing regimens (CDR) and evaluate their cost-effectiveness for GNB-BSI in the face of increasing MDR GNB. Methods: Carbapenem minimum inhibitory concentrations (MICs) were generated for non-repeat GNB-BSI obtained in 2013–2014 from two hospitals. Monte Carlo simulations were used to assess the cumulative fraction of response (CFR) of various CDRs using the percentage of time above MIC for 40% (%T > MIC of 40%) as the pharmacokinetic (PK)–pharmacodynamic (PD) parameter for efficacy. Carbapenem costs were based on patient antibiotic costs. Antibiotic cost-effectiveness was calculated as total daily drug cost/CFR. Results: A total of 1,140 bloodstream isolates were collected. They comprised 116 Acinetobacter baumannii, 237 Pseudomonas aeruginosa, and 787 Enterobacteriaceae. All CDRs achieved ~40, ~80, and ≥90% CFRs against A. baumannii, P. aeruginosa, and Enterobacteriaceae, respectively. Against P. aeruginosa, MER 2 g every 8 h infused over 3 h and DOR 1 g every 8 h infused over 4 h achieved CFRs 84 and 81%, respectively. Against Enterobacteriaceae, the cost of MER 2 g every 8 h infused over 3 h was the lowest among the three carbapenems at $0.40/percentage of CFR. Conclusion: This study demonstrates the utility of PK–PD modeling to formulate the optimal selection of a cost-effective empiric CDR in antibiotics guidelines and formulary inclusion. The findings support the selection of high MER doses of prolonged infusions as empiric coverage for GNB-BSI in our institutions. Keywords: empiric carbapenem regimens, multidrug resistant, Gram-negative bacteria, bloodstream infection

    The enteric nervous system and gastrointestinal innervation: integrated local and central control

    Full text link
    corecore