19 research outputs found

    Northern blotting analysis of microRNAs, their precursors and RNA interference triggers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous microRNAs (miRNAs) have heterogeneous ends resulting from imprecise cleavages by processing nucleases and from various non-templated nucleotide additions. The scale of miRNA end-heterogeneity is best shown by deep sequencing data revealing not only the major miRNA variants but also those that occur in only minute amounts and are unlikely to be of functional importance. All RNA interference (RNAi) technology reagents that are expressed and processed in cells are also exposed to the same machinery generating end-heterogeneity of the released short interfering RNAs (siRNAs) or miRNA mimetics.</p> <p>Results</p> <p>In this study we have analyzed endogenous and exogenous RNAs in the range of 20-70 nt by high-resolution northern blotting. We have validated the results obtained with northern blotting by comparing them with data derived from miRNA deep sequencing; therefore we have demonstrated the usefulness of the northern blotting technique in the investigation of miRNA biogenesis, as well as in the characterization of RNAi technology reagents.</p> <p>Conclusions</p> <p>The conventional northern blotting enhanced to high resolution may be a useful adjunct to other miRNA discovery, detection and characterization methods. It provides quantitative data on distribution of major length variants of abundant endogenous miRNAs, as well as on length heterogeneity of RNAi technology reagents expressed in cells.</p

    The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors

    Get PDF
    One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer

    Structural basis of microRNA length variety

    Get PDF
    The biogenesis of human microRNAs (miRNAs) includes two RNA cleavage steps in which the activities of the RNases Drosha and Dicer are involved. miRNAs of diverse lengths are generated from different genes, and miRNAs that are heterogeneous in length are produced from a single miRNA gene. We determined the solution structures of many miRNA precursors and analysed the structural basis of miRNA length diversity using a new measure: the weighted average length of diced RNA (WALDI). We found that asymmetrical structural motifs present in precursor hairpins are primarily responsible for the length diversity of miRNAs generated by Dicer. High-resolution northern blots of miRNAs and their precursors revealed that both Dicer and Drosha cleavages of imperfect specificity contributed to the miRNA length heterogeneity. The relevance of these findings to the dynamics of the dicing complex, mRNA regulation by miRNA, RNA interference and miRNA technologies are discussed

    Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies

    No full text
    Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control

    In Vitro Expansion of CAG, CAA, and Mixed CAG/CAA Repeats

    No full text
    Polyglutamine diseases, including Huntington’s disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguish the effects triggered by mutant protein from those caused by mutant RNA in cellular models of polyglutamine diseases. We used the SLIP (Synthesis of Long Iterative Polynucleotide) method to generate plasmids expressing long CAG repeats (forming a hairpin structure), CAA-interrupted CAG repeats (forming multiple unstable hairpins) or pure CAA repeats (not forming any secondary structure). We successfully modified the original SLIP protocol to generate repeats of desired length starting from constructs containing short repeat tracts. We demonstrated that the SLIP method is a time- and cost-effective approach to manipulate the lengths of expanded repeat sequences

    High-Resolution Northern Blot for a Reliable Analysis of MicroRNAs and Their Precursors

    No full text
    This protocol describes how to perform northern blot analyses to detect microRNAs and their precursors with single-nucleotide resolution, which is crucial for analyzing individual length variants and for evaluating relative quantities of unique microRNAs in cells. Northern blot analysis consists of resolving RNAs by gel electrophoresis, followed by transferring and fixing to nylon membranes as well as detecting by hybridization with radioactive probes. Earlier efforts to improve this method focused mainly on altering the sensitivity of short RNA detection. We have enhanced the resolution of the northern blot technique by optimizing the electrophoresis step. We have also investigated other steps of the procedure with the goal of enhancing the resolution of RNAs; herein, we present several recommendations to do so. Our protocol is applicable to analyses of all kinds of endogenous and exogenous RNAs, falling within length ranges of 20–30 and 50–70 nt, corresponding to microRNA and pre-microRNA lengths, respectively

    Cooperation meets competition in microRNA-mediated DMPK transcript regulation.

    No full text
    The fundamental role of microRNAs (miRNAs) in the regulation of gene expression has been well-established, but many miRNA-driven regulatory mechanisms remain elusive. In the present study, we demonstrate that miRNAs regulate the expression of DMPK, the gene mutated in myotonic dystrophy type 1 (DM1), and we provide insight regarding the concerted effect of the miRNAs on the DMPK target. Specifically, we examined the binding of several miRNAs to the DMPK 3′ UTR using luciferase assays. We validated the interactions between the DMPK transcript and the conserved miR-206 and miR-148a. We suggest a possible cooperativity between these two miRNAs and discuss gene targeting by miRNA pairs that vary in distance between their binding sites and expression profiles. In the same luciferase reporter system, we showed miR-15b/16 binding to the non-conserved CUG repeat tract present in the DMPK transcript and that the CUG-repeat-binding miRNAs might also act cooperatively. Moreover, we detected miR-16 in cytoplasmic foci formed by exogenously expressed RNAs with expanded CUG repeats. Therefore, we propose that the expanded CUGs may serve as a target for concerted regulation by miRNAs and may also act as molecular sponges for natural miRNAs with CAG repeats in their seed regions, thereby affecting their physiological functions
    corecore