24 research outputs found

    An Association between Diet and MC4R Genetic Polymorphism, in Relation to Obesity and Metabolic Parameters—A Cross Sectional Population-Based Study

    No full text
    The melanocortin-4 receptor (MC4R) gene harbours one of the strongest susceptibility loci for obesity and obesity-related metabolic consequences. We analysed whether dietary factors may attenuate the associations between MC4R genotypes and obesity and metabolic parameters. In 819 participants genotyped for common MC4R polymorphisms (rs17782313, rs12970134, rs633265, and rs135034), the anthropometric measurements, body fat content and distribution (visceral and subcutaneous adipose tissue, VAT and SAT, respectively), and blood glucose, insulin, total-, LDL-, HDL-cholesterol, triglycerides concentrations, and daily macronutrient intake were assessed. ANOVA or Kruskal–Wallis tests were used, and multivariate linear regression models were developed. We observed that the CC genotype carriers (rs17782313) presented higher VAT, VAT/SAT ratio, fasting blood glucose and triglyceride concentrations when they were stratified to the upper quantiles of protein intake. An increase in energy derived from proteins was associated with higher BMI (Est. 5.74, R2 = 0.12), body fat content (Est. 8.44, R2 = 0.82), VAT (Est. 32.59, R2 = 0.06), and VAT/SAT ratio (Est. 0.96, R2 = 0.05). The AA genotype carriers (rs12970134) presented higher BMI, body fat, SAT and VAT, fasting blood glucose, triglycerides and total cholesterol concentrations. An increase in energy derived from proteins by AA carriers was associated with higher VAT (Est.19.95, R2 = 0.06) and VAT/SAT ratio (Est. 0.64, R2 = 0.05). Our findings suggest that associations of the common MC4R SNPs with obesity and its metabolic complications may be dependent on the daily dietary intake, which may open new areas for developing personalised diets for preventing and treating obesity and obesity-related comorbidities

    Evaluation of Energy Expenditure and Oxidation of Energy Substrates in Adult Males after Intake of Meals with Varying Fat and Carbohydrate Content

    No full text
    Obesity is a result of positive energy balance. The aim of this study was to measure (in crossover trials) the energy expenditure and oxidation of glucose and lipids, both at the fasting state and after an intake of meals with a varying macronutrient content, in normal-weight and overweight/obese people. In the study, 46 healthy adult males (23 with normal body weight and 23 overweight/obese), aged 21–58, were examined. During two consecutive visits, subjects received isocaloric standardized meals (450 kcal) with different content of basic nutrients. Resting metabolic rate and carbohydrate and fat utilization were evaluated during the fasting state and postprandially, using an indirect calorimetry method. Energy expenditure was higher in people with normal body weight and slightly higher after the high-carbohydrate meal. In overweight/obese people, increased expenditure was noted after normo-carbohydrate meal intake. The high-fat meal induced lower postprandial thermal response compared to a high-carbohydrate meal, both in people with normal body weight and in overweight/obese men. Glucose utilization was higher after the high-carbohydrate meal, and it was higher in the normal body weight group than in overweight/obese people. In addition, overweight/obese people showed a lower level of fatty acid oxidation under fasting conditions which, together with limited ability to oxidize energy substrates, depending on their availability, indicates that these people are characterized by lower metabolic flexibility

    The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: a randomized crossover study

    No full text
    Abstract Background Hormones, which influence satiety and hunger, play a significant role in body energy balance regulation. Ghrelin is a peptide that plays an important role in short-term appetite regulation, whereas leptin is a factor that controls long-term energy balance and is considered as a satiety hormone. The aim of this study was to evaluate the leptin/ghrelin ratio in a fasting state and after the intake of meals with varying macronutrient contents and to assess the possible differences between normal body weight and overweight/obese men. Methods We examined 46 healthy adult men (23 with normal body weight and 23 overweight/obese) aged 21–58, who were divided into two groups. In the crossover study, participants received isocaloric (450 kcal) meals with different macronutrient contents: men from the first group received high-carbohydrate (HC) and normo-carbohydrate (NC) meals, and in the second group, participants received high-carbohydrate and high-fat (HF) meals. The ratio of leptin/ghrelin levels was calculated from leptin and total ghrelin serum concentrations in a fasting state and 30, 60, 120, 180 and 240 min after meal intake. One-way ANOVA and Wilcoxon signed-rank tests were carried out. The normality of the variable distribution was checked with the Shapiro–Wilk test, the homogeneity of variances was verified with the Levene test, and the false discovery rate p-value adjustment method was used. Results The leptin/ghrelin ratio was significantly higher in overweight/obese men than individuals with normal body weight in a fasting state, as well as postprandially. We observed trends towards a higher leptin/ghrelin ratio values from the 60 min after HC-meal intake compared to the NC- and HF-meals in normal body weight participants, while in overweight/obese men, we did not note any significant differences dependent on the meal type. Conclusions We have observed a significantly different postprandial leptin/ghrelin ratio in normal body weight and overweight/obese men, and our results suggest that in men with normal body weight, a greater feeling of satiety may occur after high-carbohydrate meal intake, which was not noted in the overweight/obese individuals

    High-Fat or High-Carbohydrate Meal—Does It Affect the Metabolism of Men with Excess Body Weight?

    No full text
    Excessive adipose tissue in the body may lead to adverse health effects, carbohydrate and lipid metabolism disorders, and cardiovascular diseases. The aim of this study was to analyze the effect of a standardized high-fat meal (HF) on changes in energy expenditure and changes in the oxidation of energy substrates as well as the concentration of glucose, insulin, triglycerides and homocysteine in blood serum in relation to a standardized high-carbohydrate (non-fat, HC) meal in men with different nutritional status. In this study, 26 men (aged 19–60) without carbohydrate disorders (study group GS = 13 overweight/obese; control group GC = 13 normal body weight) were examined. It was observed that following a high-fat or high-carbohydrate meal, men with excessive body weight metabolized the main nutrients differently than men with normal body weight, and postprandial insulin secretion was also different (even without any significant differences in glucose concentrations). Overweight/obesity, which is in itself a risk factor for cardiovascular disease, contributes to an increase in the concentration of other risk factors, such as the concentration of homocysteine and triglycerides, which is referred to as cardiometabolic risk. Consumption of a high-fat meal increased the number of potential risk factors for cardiovascular disease (homocysteine and triglycerides) compared to a high-carbohydrate meal

    A Synergistic Formulation of Plant Extracts Decreases Postprandial Glucose and Insulin Peaks: Results from Two Randomized, Controlled, Cross-Over Studies Using Real-World Meals

    No full text
    This study investigated the efficacy of a plant-derived dietary supplement with respect to decreasing postprandial glucose and insulin peaks after the intake of real-world meals. Two randomized, double-blind, placebo-controlled, cross-over experiments were conducted on healthy subjects who received a supplement containing extracts of white mulberry, white bean, and green coffee or one containing the three extracts with added fibre before consuming high-GI/GL (glycaemic index/glycaemic load) meals. In study one, 32 subjects received an investigational product/placebo before a standardized meal at two visits. In study two, 150 subjects received an investigational product/placebo before five different standardized meals. Postprandial glucose and insulin concentrations were lower 20–35 min after meal intake among subjects taking the investigational product, and fewer episodes of postprandial reactive hypoglycaemia were noted. For example, after consuming breakfast cereal with milk, lower glucose peaks were observed for the investigational product (vs. placebo) after 20 min (100.2 ± 1.97 vs. 112.5 ± 3.12 mg/dL, respectively; p < 0.01); lower insulin peaks were noted at the same time point (45.9 ± 4.02 IU/mL vs. 68.2 ± 5.53 IU/mL, respectively, p < 0.01). The combined formulation decreases the adverse consequences of high-GI/GL meal consumption. It can be an effective dietary supplement for the management of metabolic syndrome and type 2 diabetes mellitus

    The Differences in Postprandial Serum Concentrations of Peptides That Regulate Satiety/Hunger and Metabolism after Various Meal Intake, in Men with Normal vs. Excessive BMI

    No full text
    The energy balance regulation may differ in lean and obese people. The purposes of our study were to evaluate the hormonal response to meals with varying macronutrient content, and the differences depending on body weight. Methods. The crossover study included 46 men, 21⁻58 years old, normal-weight and overweight/obese. Every subject participated in two meal-challenge-tests with high-carbohydrate (HC), and normo-carbohydrate (NC) or high-fat (HF) meals. Fasting and postprandial blood was collected for a further 240 min, to determine adiponectin, leptin and total ghrelin concentrations. Results. In normal-weight individuals after HC-meal we observed at 60min higher adiponectin concentrations (12,554 ± 1531 vs. 8691 ± 1070 ng/mL, p = 0.01) and significantly (p < 0.05) lower total ghrelin concentrations during the first 120 min, than after HF-meal intake. Fasting and postprandial leptin levels were significantly (p < 0.05) higher in overweigh/obese men. Leptin concentrations in normal-weight men were higher (2.72 ± 0.8 vs. 1.56 ± 0.4 ng/mL, p = 0.01) 180 min after HC-meal than after NC-meal intake. Conclusions. Our results suggest that in normal-body weight men we can expect more beneficial leptin, adiponectin, and total ghrelin response after HC-meal intake, whereas, in overweight/obese men, the HC-meal intake may exacerbate the feeling of hunger, and satiety may be induced more by meals with lower carbohydrate content

    Evaluation of Energy Expenditure and Oxidation of Energy Substrates in Adult Males after Intake of Meals with Varying Fat and Carbohydrate Content

    No full text
    Obesity is a result of positive energy balance. The aim of this study was to measure (in crossover trials) the energy expenditure and oxidation of glucose and lipids, both at the fasting state and after an intake of meals with a varying macronutrient content, in normal-weight and overweight/obese people. In the study, 46 healthy adult males (23 with normal body weight and 23 overweight/obese), aged 21–58, were examined. During two consecutive visits, subjects received isocaloric standardized meals (450 kcal) with different content of basic nutrients. Resting metabolic rate and carbohydrate and fat utilization were evaluated during the fasting state and postprandially, using an indirect calorimetry method. Energy expenditure was higher in people with normal body weight and slightly higher after the high-carbohydrate meal. In overweight/obese people, increased expenditure was noted after normo-carbohydrate meal intake. The high-fat meal induced lower postprandial thermal response compared to a high-carbohydrate meal, both in people with normal body weight and in overweight/obese men. Glucose utilization was higher after the high-carbohydrate meal, and it was higher in the normal body weight group than in overweight/obese people. In addition, overweight/obese people showed a lower level of fatty acid oxidation under fasting conditions which, together with limited ability to oxidize energy substrates, depending on their availability, indicates that these people are characterized by lower metabolic flexibility

    The Impact of FTO Genetic Variants on Obesity and Its Metabolic Consequences is Dependent on Daily Macronutrient Intake

    No full text
    Numerous studies have identified the various fat mass and obesity-associated (FTO) genetic variants associated with obesity and its metabolic consequences; however, the impact of dietary factors on these associations remains unclear. The aim of this study was to evaluate the association between FTO single nucleotide polymorphisms (SNPs), daily macronutrient intake, and obesity and its metabolic consequences. From 1549 Caucasian subjects of Polish origin, genotyped for the FTO SNPs (rs3751812, rs8044769, rs8050136, and rs9939609), 819 subjects were selected for gene–diet interaction analysis. Anthropometric measurements were performed and total body fat content and distribution, blood glucose and insulin concentration during oral glucose tolerance test (OGTT), and lipid profile were determined. Macronutrient intake was analyzed based on three-day food records, and daily physical activity levels were evaluated using the International Physical Activity Questionnaire Long Form (IPAQ-LF). Our study shows that carriers of the GG genotype of rs3751812 presented lower body weight, body mass index (BMI), total body fat content, and hip and waist circumference and presented lower obesity-related markers if more than 48% of daily energy intake was derived from carbohydrates and lower subcutaneous and visceral fat content when energy intake derived from dietary fat did not exceed 30%. Similar results were observed for rs8050136 CC genotype carriers. We did not notice any significant differences in obesity markers between genotypes of rs8044769, but we did observe a significant impact of diet-gene associations. Body weight and BMI were significantly higher in TT and CT genotype carriers if daily energy intake derived from carbohydrates was less than 48%. Moreover, in TT genotype carriers, we observed higher blood glucose concentration while fasting and during the OGTT test if more than 18% of total energy intake was derived from proteins. In conclusion, our results indicate that daily macronutrient intake may modulate the impact of FTO genetic SNPs on obesity and obesity-related metabolic consequences

    Dietary Fiber Intake May Influence the Impact of FTO Genetic Variants on Obesity Parameters and Lipid Profile—A Cohort Study of a Caucasian Population of Polish Origin

    No full text
    Genetic and environmental factors play a key role in the development of obesity. The aim of this study was to explore the potential effect of fat mass and obesity-associated (FTO) rs3751812, rs8050136, rs9939609, rs6499640, rs8044769, and rs7190492 genotypes and dietary fiber intake on the obesity-related parameters and lipid profile in the Polish population. We selected 819 Polish Caucasian adult subjects (52.5% female and 47.5% male) for a final gene–diet interaction analysis, with mean BMI 28.5 (±6.6) kg/m2. We performed measurements of anthropometric parameters, total body fat content and distribution, and blood glucose, insulin, and lipid concentrations. Daily fiber intake was analyzed based on 3-day food-intake diaries, and daily physical activity was evaluated based on the International Physical Activity Questionnaire—Long Form. Our study shows that carriers of the GG genotype (rs3751812), CC genotype (rs8050136), and GG genotype (rs6499640) presented lower hip circumference if daily fiber intake was above 18 g per day. Additionally, GG genotype (rs3751812) and CC genotype (rs8050136) carriers showed surprisingly higher total cholesterol and LDL-cholesterol levels when they were stratified to the group with higher than median fiber intake. The results of this study highlight that high-fiber diets may positively affect anthropometric parameters but may also worsen lipid profile dependent on the FTO genotype

    In-and-Out Molecular Changes Linked to the Type 2 Diabetes Remission after Bariatric Surgery: An Influence of Gut Microbes on Mitochondria Metabolism

    No full text
    Different kinds of gastrointestinal tract modulations known as “bariatric surgery” are actually the most effective treatment for obesity and associated co-morbidities, such as type 2 diabetes (T2DM). The potential causes of those effects have yet to be explained. In our study, we focused on molecular changes evoked by laparoscopic sleeve gastrectomy leading to T2DM remission. Two complementary metabolomics techniques, namely, liquid chromatography coupled with mass spectrometry (LC-MS) and gas chromatography mass spectrometry (GC-MS), were used to study those effects in a group of 20 obese patients with T2DM selected from a cohort of 372 obese individuals who underwent bariatric surgery and did not receive anti-diabetic treatment afterward. Modified levels of carnitines, lipids, amino acids (including BCAA) and α- and β-hydroxybutyric acids were detected. Presented alterations suggest a major role of mitochondria activity in T2DM remission process. Moreover, some of the observed metabolites suggest that changes in gut microbiota composition may also correlate with the tempo of diabetes recovery. Additional analyses confirmed a relationship between biochemical and clinical parameters and the aforementioned metabolites, thereby, highlighting a role of mitochondria and microbes. Our data suggests that there is a previously undescribed relationship between mitochondria and gut microbiota, which changes after the bariatric surgery. More investigations are needed to confirm and explore the observed findings
    corecore