5 research outputs found

    The association of maternal-infant interactive behavior, dyadic frontal alpha asymmetry, and maternal anxiety in a smartphone-adapted still face paradigm

    Get PDF
    Mother-infant interactions form a strong basis for emotion regulation development in infants. These interactions can be affected by various factors, including maternal postnatal anxiety. Electroencephalography (EEG) hyperscanning allows for simultaneous assessment of mother-infant brain-to-behavior association during stressful events, such as the still-face paradigm (SFP). This study aimed at investigating dyadic interactive behavior and brain-to-behavior association across SFP and identifying neural correlates of mother-infant interactions in the context of maternal postnatal anxiety. We measured frontal alpha asymmetry (FAA), a physiological correlate of emotion regulation and a potential marker of risk for psychopathology. To emulate real-life interactions, EEG and behavioral data were collected from 38 mother-infant dyads during a smartphone-adapted dual-SFP. Although the behavioral data showed a clear still-face effect for the smartphone-adapted SFP, this was not reflected in the infant or maternal FAA. Brain-to-behavior data showed higher infant negative affect being associated with more infant leftward FAA during the still-face episodes. Finally, mothers with higher postnatal anxiety showed more right FAA during the first still-face episode, suggesting negative affectivity and a need to withdraw from the situation. Our results form a baseline for further research assessing the effects of maternal postnatal anxiety on infants' FAA and dyadic interactive behavior

    Data from a survey on the impact of the pandemic on early-stage academics

    No full text
    We would like to share data from a survey run by the Young Academy of Europe (YAE) from June to October 2020, with questions aiming to unravel the situation of early-career researchers (including early stage group leaders) working in Europe, during the COVID-19 pandemic. We were particularly interested in the impact of care activities (related to young children or other family members), and the impact of gender. We include the online survey and collected data, without identifying information. The survey is published in Nature Career Column (July, 2021) ( https://www.nature.com/articles/d41586-021-01952-6)

    The association of maternal-infant interactive behavior, dyadic frontal alpha asymmetry, and maternal anxiety in a smartphone-adapted still face paradigm

    No full text
    Mother-infant interactions form a strong basis for emotion regulation development in infants. These interactions can be affected by various factors, including maternal postnatal anxiety. Electroencephalography (EEG) hyperscanning allows for simultaneous assessment of mother-infant brain-to-behavior association during stressful events, such as the still-face paradigm (SFP). This study aimed at investigating dyadic interactive behavior and brain-to-behavior association across SFP and identifying neural correlates of mother-infant interactions in the context of maternal postnatal anxiety. We measured frontal alpha asymmetry (FAA), a physiological correlate of emotion regulation and a potential marker of risk for psychopathology. To emulate real-life interactions, EEG and behavioral data were collected from 38 mother-infant dyads during a smartphone-adapted dual-SFP. Although the behavioral data showed a clear still-face effect for the smartphone-adapted SFP, this was not reflected in the infant or maternal FAA. Brain-to-behavior data showed higher infant negative affect being associated with more infant leftward FAA during the still-face episodes. Finally, mothers with higher postnatal anxiety showed more right FAA during the first still-face episode, suggesting negative affectivity and a need to withdraw from the situation. Our results form a baseline for further research assessing the effects of maternal postnatal anxiety on infants’ FAA and dyadic interactive behavior

    Encapsulation of Paramagnetic Chelates in Perfluorocarbon-loaded Fractal Nanoparticles Enables Modulation of Fluorine-19 and Proton Magnetic Resonance Imaging Signal

    No full text
    19F magnetic resonance imaging (19F MRI) is an emerging technique for quantitative imaging of novel therapies, such as cellular therapies and theranostic nanocarriers. A modification of perfluorocarbon (PFC)-loaded, nanocarrier-based 19F MRI probes with paramagnetic chelates can enhance probe’s functionality. Liquid PFC-loaded nanocarriers typically have a core-shell structure with PFC in the core due to the poor miscibility of PFC. However, paramagnetic relaxation enhancement acts only at a distance of a few angstroms. Thus, efficient modulation of 19F signal is possible only with fluorophilic PFC-soluble chelates. Such chelates, however, cannot interact with the surroundings of nanocarriers. Conversely, chelates on the surface typically affect only the aqueous environment but not the 19F signal. We show that the confinement of PFC in biodegradable polymeric nanoparticles with fractal structure enables modulation of longitudinal and transverse 19F relaxation, as well as proton signal, using non-fluorophilic paramagnetic chelates. We compared nanoparticles with fractal multicore versus conventional core-shell structure, where the PFC is encapsulated in the core(s) and the chelate in the surrounding polymeric matrix. Importantly, paramagnetic chelates affected both longitudinal and transverse 19F relaxation in fractal multicore nanoparticles, but not in core-shell nanocapsules. Both relaxation rates of 19F nucleus increased with an increasing concentration of the paramagnetic chelate. Moreover, as the polymeric matrix remained water-permeable, proton enhancement additionally was observed in MRI. In the future, the effects of fractal confinement could be combined with more effective paramagnetic chelates to develop multifunctional imaging probes, for example, for high-sensitivity 19F MRI combined with sensing
    corecore