100 research outputs found
A study of the efficiency of discharge of classifier spigots
A knowledge of the amounts of water and sand that will be discharged by classifier spigots under various conditions is of considerable importance in the design of classifiers. Suppose it is desired to discharge fifty tons of sand with an average diameter of 2 m.m. through a spigot orifice, the sand being mixed with 100 tons of water and the entire amount of the mixture being discharged in ten hours from the spigot, which is submerged to a depth of two feet under the water. How large a spigot is required? Problems such as this are by no means uncommon. While in many cases they may be solved by guess and trial, still the knowledge of even a limited amount of data on the subject would materially increase the accuracy of guesses and decrease the number of trials necessary to a solution of the particular problem. It was with the idea of securing such data and determining the influence of various factors upon efficiency of discharge of classifier spigots that this investigation was started --page 3
Synergistic effects of targeted PI3K signaling inhibition and chemotherapy in liposarcoma.
While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma
Bostonia: The Boston University Alumni Magazine. Volume 20
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
A-770041 reverses paclitaxel and doxorubicin resistance in osteosarcoma cells
Background: Reversing multidrug resistance (MDR) has been an important goal for clinical and investigational oncologists. In the last few decades, significant effort has been made to search for inhibitors to reverse MDR by targeting ATP-binding cassette (ABC) transporters (Pgp, MRP) directly, but these efforts have achieved little clinical success. Protein kinases play important roles in many aspects of tumor cell growth and survival. Combinations of kinase inhibitors and chemotherapeutics have been observed to overcome cancer drug resistance in certain circumstances. Methods: We screened a kinase specific inhibitor compound library in human osteosarcoma MDR cell lines to identify inhibitors that were capable of reversing chemoresistance to doxorubicin and paclitaxel. Results: We identified 18 small molecules that significantly increase chemotherapy drug-induced cell death in human osteosarcoma MDR cell lines U-2OSMR and KHOSR2. We identified A-770041 as one of the most effective MDR reversing agents when combined with doxorubicin or paclitaxel. A-770041 is a potent Src family kinase (Lck and Src) inhibitor. Western blot analysis revealed A-770041 inhibits both Src and Lck activation and expression. Inhibition of Src expression in U-2OSMR and KHOSR2 cell lines using lentiviral shRNA also resulted in increased doxorubicin and paclitaxel drug sensitivity. A-770041 increases the intracellular drug accumulation as demonstrated by calcein AM assay. Conclusions: These results indicate that small molecule inhibitor A-770041 may function to reverse ABCB1/Pgp-mediated chemotherapy drug resistance. Combination of Src family kinase inhibitor with regular chemotherapy drug could be clinically effective in MDR osteosarcoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-681) contains supplementary material, which is available to authorized users
Recommended from our members
Phase II study of olaparib in patients with refractory Ewing sarcoma following failure of standard chemotherapy
Background: Preclinical studies have documented antitumor activity of PARP inhibition both in vitro and in vivo, against Ewing sarcoma cells. This study aimed to translate that observation into a clinical trial to assess the efficacy and tolerability of olaparib, a PARP inhibitor, in patients with advanced Ewing sarcoma (EWS) progressing after prior chemotherapy. Methods: In this nonrandomized phase II trial, adult participants with radiographically measureable metastatic EWS received olaparib tablets, 400 mg orally twice daily, until disease progression or drug intolerance. Tumor measurements were determined by CT or MRI at 6 and 12 weeks after starting olaparib administration, and then every 8 weeks thereafter. Tumor response determinations were made according to RECIST 1.1, and adverse event determinations were made according to CTCAE, version 4.0. A total of 22 participants were planned to be enrolled using a conventional 2-step phase II study design. If no objective responses were observed after 12 participants had been followed for at least 3 months, further accrual would be stopped. Results: 12 participants were enrolled, and all were evaluable. There were no objective responses (PR/CR), 4 SD (duration 10.9, 11.4, 11.9, and 17.9 wks), and 8 PD as best response. Of the SD, 2 had minor responses (−9% and −11.7% by RECIST 1.1). The median time to disease progression was 5.7 weeks. Further enrollment was therefore discontinued. No significant or unexpected toxicities were observed with olaparib, with only a single case each of grade 3 anemia and grade 3 thrombocytopenia observed. Conclusions: This study is the first report of a prospective phase II trial to evaluate the safety and efficacy of a PARP inhibitor in patients with advanced Ewing sarcoma after failure of standard chemotherapy. Olaparib administration was safe and well tolerated when administered to this small heavily pre-treated cohort at the 400 mg BID dose, although the median duration of dosing was for only 5.7 weeks. No significant responses or durable disease control was seen, and the short average interval to disease progression underscores the aggressiveness of this disease. Other studies to combine cytotoxic chemotherapy with PARP inhibition in EWS are actively ongoing. Trial registration ClinicalTrials.gov Identifier: NCT0158354
CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma
Osteosarcoma is the most common primary bone malignancy in children and adolescents. Herein, we investigated the role of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration in osteosarcoma. We constructed a human osteosarcoma tissue microarray with 114 patient tumor specimens, including tumor tissues from primary, metastatic, and recurrent stages, and determined the expression of CD44 by immunohistochemistry. Results showed that CD44 was overexpressed in metastatic and recurrent osteosarcoma as compared with primary tumors. Higher expression of CD44 was found in both patients with shorter survival and patients who exhibited unfavorable response to chemotherapy before surgical resection. Additionally, the 3′-untranslated region of CD44 mRNA was the direct target of microRNA-199a-3p (miR-199a-3p). Overexpression of miR-199a-3p significantly inhibited CD44 expression in osteosarcoma cells. miR-199a-3p is one of the most dramatically decreased miRs in osteosarcoma cells and tumor tissues as compared with normal osteoblast cells. Transfection of miR-199a-3p significantly increased the drug sensitivity through down-regulation of CD44 in osteosarcoma cells. Taken together, these results suggest that the CD44-miR-199a-3p axis plays an important role in the development of metastasis, recurrence, and drug resistance of osteosarcoma. Developing strategies to target CD44 may improve the clinical outcome of osteosarcoma
ZNF93 Increases Resistance to ET-743 (Trabectedin; Yondelis®) and PM00104 (Zalypsis®) in Human Cancer Cell Lines
ET-743 (trabectedin, Yondelis) and PM00104 (Zalypsis) are marine derived compounds that have antitumor activity. ET-743 and PM00104 exposure over sustained periods of treatment will result in the development of drug resistance, but the mechanisms which lead to resistance are not yet understood.Human chondrosarcoma cell lines resistant to ET-743 (CS-1/ER) or PM00104 (CS-1/PR) were established in this study. The CS-1/ER and CS-1/PR exhibited cross resistance to cisplatin and methotrexate but not to doxorubicin. Human Affymetrix Gene Chip arrays were used to examine relative gene expression in these cell lines. We found that a large number of genes have altered expression levels in CS-1/ER and CS-1/PR when compared to the parental cell line. 595 CS-1/ER and 498 CS-1/PR genes were identified as overexpressing; 856 CS-1/ER and 874 CS-1/PR transcripts were identified as underexpressing. Three zinc finger protein (ZNF) genes were on the top 10 overexpressed genes list. These genes have not been previously associated with drug resistance in tumor cells. Differential expressions of ZNF93 and ZNF43 genes were confirmed in both CS-1/ER and CS-1/PR resistant cell lines by real-time RT-PCR. ZNF93 was overexpressed in two ET-743 resistant Ewing sarcoma cell lines as well as in a cisplatin resistant ovarian cancer cell line, but was not overexpressed in paclitaxel resistant cell lines. ZNF93 knockdown by siRNA in CS-1/ER and CS-1/PR caused increased sensitivity for ET-743, PM00104, and cisplatin. Furthermore, ZNF93 transfected CS-1 cells are relatively resistant to ET-743, PM00104 and cisplatin.This study suggests that zinc finger proteins, and ZNF93 in particular, are involved in resistance to ET-743 and PM00104
- …