496 research outputs found

    Book Reviews

    Get PDF
    This is a book that every lawyer should read and every law student should be required to read. It is the culminating work of a masterly mind that for over fifty years has been studying governments, ancient and modern,\u27 and meantime the writer has had the practical advantage of holding high and responsible offices, including that of British Ambassador to the United States. Viscount Bryce speaks plainly of American national, state and municipal shortcomings in government, especially the last, but it is done in a kindly vein. He is a friend of America and gives us credit for much

    Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem

    Get PDF
    BACKGROUND: Individuals with autism spectrum disorder (ASD) show atypical scan paths during social interaction and when viewing faces, and recent evidence suggests that they also show abnormal saccadic eye movement dynamics and accuracy when viewing less complex and non-social stimuli. Eye movements are a uniquely promising target for studies of ASD as their spatial and temporal characteristics can be measured precisely and the brain circuits supporting them are well-defined. Control of saccade metrics is supported by discrete circuits within the cerebellum and brainstem - two brain regions implicated in magnetic resonance (MR) morphometry and histopathological studies of ASD. The functional integrity of these distinct brain systems can be examined by evaluating different parameters of visually-guided saccades. METHODS: A total of 65 participants with ASD and 43 healthy controls, matched on age (between 6 and 44-years-old), gender and nonverbal IQ made saccades to peripheral targets. To examine the influence of attentional processes, blocked gap and overlap trials were presented. We examined saccade latency, accuracy and dynamics, as well as the trial-to-trial variability of participants’ performance. RESULTS: Saccades of individuals with ASD were characterized by reduced accuracy, elevated variability in accuracy across trials, and reduced peak velocity and prolonged duration. In addition, their saccades took longer to accelerate to peak velocity, with no alteration in the duration of saccade deceleration. Gap/overlap effects on saccade latencies were similar across groups, suggesting that visual orienting and attention systems are relatively spared in ASD. Age-related changes did not differ across groups. CONCLUSIONS: Deficits precisely and consistently directing eye movements suggest impairment in the error-reducing function of the cerebellum in ASD. Atypical increases in the duration of movement acceleration combined with lower peak saccade velocities implicate pontine nuclei, specifically suggesting reduced excitatory activity in burst cells that drive saccades relative to inhibitory activity in omnipause cells that maintain stable fixation. Thus, our findings suggest that both cerebellar and brainstem abnormalities contribute to altered sensorimotor control in ASD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2040-2392-5-47) contains supplementary material, which is available to authorized users

    Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders

    Get PDF
    Restricted and repetitive behaviors, and a pronounced preference for behavioral and environmental consistency, are distinctive characteristics of autism spectrum disorder (ASD). Alterations in frontostriatal circuitry that supports flexible behavior might underlie this behavioral impairment. In an functional magnetic resonance imaging study of 17 individuals with ASD, and 23 age-, gender- and IQ-matched typically developing control participants, reversal learning tasks were used to assess behavioral flexibility as participants switched from one learned response choice to a different response choice when task contingencies changed. When choice outcome after reversal was uncertain, the ASD group demonstrated reduced activation in both frontal cortex and ventral striatum, in the absence of task performance differences. When the outcomes of novel responses were certain, there was no difference in brain activation between groups. Reduced activation in frontal cortex and ventral striatum suggest problems in decision-making and response planning, and in processing reinforcement cues, respectively. These processes, and their integration, are essential for flexible behavior. Alterations in these systems may therefore contribute to a rigid adherence to preferred behavioral patterns in individuals with an ASD. These findings provide an additional impetus for the use of reversal learning paradigms as a translational model for treatment development targeting the domain of restricted and repetitive behaviors in ASD

    Overt Behavior Problems and Serotonergic Function in Middle Childhood Among Male and Female Offspring of Alcoholic Fathers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65662/1/j.1530-0277.1998.tb03917.x.pd

    Familiality of behavioral flexibility and response inhibition deficits in autism spectrum disorder (ASD)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background Diminished cognitive control, including reduced behavioral flexibility and behavioral response inhibition, has been repeatedly documented in autism spectrum disorder (ASD). We evaluated behavioral flexibility and response inhibition in probands and their parents using a family trio design to determine the extent to which these cognitive control impairments represent familial traits associated with ASD. Methods We examined 66 individuals with ASD (probands), 135 unaffected biological parents, and 76 typically developing controls. Participants completed a probabilistic reversal learning task (PRL) and a stop-signal task (SST) to assess behavioral flexibility and response inhibition respectively. Rates of PRL and SST errors were examined across groups, within families, and in relation to clinical and subclinical traits of ASD. Based on prior findings that subclinical broader autism phenotypic (BAP) traits may co-segregate within families and reflect heritable risk factors, we also examined whether cognitive control deficits were more prominent in families in which parents showed BAP features (BAP+). Results Probands and parents each showed increased rates of PRL and SST errors relative to controls. Error rates across tasks were not related. SST error rates inter-correlated among probands and their parents. PRL errors were more severe in BAP+ parents and their children relative to BAP− parents and their children. For probands of BAP+ parents, PRL and SST error rates were associated with more severe social-communication abnormalities and repetitive behaviors, respectively. Conclusion Reduced behavioral flexibility and response inhibition are present among probands and their unaffected parents, but represent unique familial deficits associated with ASD that track with separate clinical issues. Specifically, behavioral response inhibition impairments are familial in ASD and manifest independently from parental subclinical features. In contrast, behavioral flexibility deficits are selectively present in families with BAP characteristics, suggesting they co-segregate in families with parental subclinical social, communication, and rigid personality traits. Together, these findings provide evidence that behavioral flexibility and response inhibition impairments track differentially with ASD risk mechanisms and related behavioral traits

    Repetitive behavior profiles: Consistency across autism spectrum disorder cohorts and divergence from Prader–Willi syndrome

    Get PDF
    Restricted and repetitive behavior (RRB) is a group of heterogeneous maladaptive behaviors. RRB is one of the key diagnostic features of autism spectrum disorders (ASDs) and also commonly observed in Prader–Willi syndrome (PWS). In this study, we assessed RRB using the Repetitive Behavior Scale-Revised (RBS-R) in two ASD samples (University of Illinois at Chicago [UIC] and University of Florida [UF]) and one PWS sample. We compared the RBS-R item endorsements across three ASD cohorts (UIC, UF and an ASD sample from Lam, The Repetitive Behavior Scale-Revised: independent validation and the effect of subject variables, PhD thesis, 2004), and a PWS sample. We also compared the mean RBS-R subscale/sum scores across the UIC, UF and PWS samples; across the combined ASD (UIC + UF), PWS-deletion and PWS-disomy groups; and across the combined ASD sample, PWS subgroup with a Social Communication Questionnaire (SCQ) score ≄15, and PWS subgroup with a SCQ score <15. Despite the highly heterogeneous nature, the three ASD samples (UIC, UF and Lam’s) showed a similar pattern of the RBS-R endorsements, and the mean RBS-R scores were not different between the UIC and UF samples. However, higher RRB was noted in the ASD sample compared with the PWS sample, as well as in the PWS subgroup with a SCQ score ≄15 compared with the PWS subgroup with a SCQ score <15. Study limitations include a small sample size, a wide age range of our participants, and not controlling for potential covariates. A future replication study using a larger sample and further investigation into the genetic bases of overlapping ASD and RRB phenomenology are needed, given the higher RRB in the PWS subgroup with a SCQ score ≄15
    • 

    corecore