2 research outputs found

    Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common type of dementia affecting regions of the central nervous system that exhibit synaptic plasticity and are involved in higher brain functions such as learning and memory. AD is characterized by progressive cognitive dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy metabolism. Cell therapy has emerged as an alternative treatment of AD. The use of adult stem cells, such as neural stem cells and Mesenchymal Stem Cells (MSCs) from bone marrow and adipose tissue, have the potential to decrease cognitive deficits, possibly by reducing neuronal loss through blocking apoptosis, increasing neurogenesis, synaptogenesis and angiogenesis. These processes are mediated primarily by the secretion of many growth factors, anti-inflammatory proteins, membrane receptors, microRNAs (miRNA) and exosomes. Exosomes encapsulate and transfer several functional molecules like proteins, lipids and regulatory RNA which can modify cell metabolism. In the proteomic characterization of the content of MSC-derived exosomes, more than 730 proteins have been identified, some of which are specific cell type markers and others are involved in the regulation of binding and fusion of exosomes with adjacent cells. Furthermore, some factors were found that promote the recruitment, proliferation and differentiation of other cells like neural stem cells. Moreover, within exosomal cargo, a wide range of miRNAs were found, which can control functions related to neural remodeling as well as angiogenic and neurogenic processes. Taking this into consideration, the use of exosomes could be part of a strategy to promote neuroplasticity, improve cognitive impairment and neural replacement in AD. In this review, we describe how exosomes are involved in AD pathology and discuss the therapeutic potential of MSC-derived exosomes mediated by miRNA and protein cargo

    Approximations to Diagnosis and Therapy of COVID-19 in Nervous Systems Using Extracellular Vesicles

    No full text
    The SARS-CoV-2 virus was first identified at the end of December 2019, causing the disease known as COVID-19, which, due to the high degree of contagion, was declared a global pandemic as of 2020. The end of the isolation was in 2022, thanks to the global multidisciplinary work of the massive vaccination campaigns. Even with the current knowledge about this virus and the COVID-19 disease, there are many questions and challenges regarding diagnosis and therapy in the fight against this virus. One of the big problems is the so-called "long COVID", prolonged symptomatology characterized as a multiorgan disorder manifested as brain fog, fatigue, and shortness of breath, which persist chronically after the disease resolution. Therefore, this review proposes using extracellular vesicles (EVs) as a therapeutic or diagnostic option to confront the sequelae of the disease at the central nervous system level. Development: the review of updated knowledge about SARS-CoV-2 and COVID-19 is generally addressed as well as the current classification of extracellular vesicles and their proposed use in therapy and diagnosis. Through an analysis of examples, extracellular vesicles are highlighted to learn what happens in the central nervous system during and after COVID-19 and as a therapeutic option. Conclusions: even though there are limitations in the knowledge of the neurological manifestations of COVID-19, it is possible to observe the potential use of extracellular vesicles in therapy or as a diagnostic method and even the importance of their study for the knowledge of the pathophysiology of the diseas
    corecore