40 research outputs found

    Manipulation of prenatal hormones and dietary phytoestrogens during adulthood alter the sexually dimorphic expression of visual spatial memory

    Get PDF
    BACKGROUND: In learning and memory tasks, requiring visual spatial memory (VSM), males exhibit higher performance levels compared to females (a difference attributed to sex steroid hormonal influences). Based upon the results from our companion investigation, this study examined the influence of prenatal sex steroid hormone manipulations on VSM in adulthood, as assessed in the radial arm maze. Additionally, the influence of dietary soy phytoestrogens (i.e., the presence of high or low estrogen-like compounds present in the animal's diet) on VSM was examined in combination with the prenatal hormonal manipulations. RESULTS: Radial arm maze performance on a phytoestrogen-rich diet: 1) females treated prenatally with testosterone were masculinized and acquired/performed in a manner similar to control or oil-treated males and 2) males treated prenatally with an androgen receptor blocker (flutamide) were feminized and acquired/performed in a fashion typical of control or flutamide-treated females. When a diet change was initiated in adulthood, control phytoestrogen-rich fed females outperformed control females switched to a phytoestrogen-free diet. Whereas, in control males the opposite diet effect was identified. Furthermore, flutamide-treated males fed a phytoestrogen-rich diet outperformed flutamide-treated males switched to a phytoestrogen-free diet. CONCLUSIONS: These results suggest that prenatal hormonal manipulations significantly sex-reverse the normal sexually dimorphic expression of VSM. Specifically, VSM was enhanced in females treated with testosterone and inhibited in males treated with flutamide. Finally, dietary soy phytoestrogens set a bias on learning and memory in these hormonally manipulated animals in a predictable manner and these data confirm and extend the findings in our companion paper (see Lund etal, BMC Neuroscience 2001 2:20)

    Influences of dietary soy isoflavones on metabolism but not nociception and stress hormone responses in ovariectomized female rats

    Get PDF
    BACKGROUND: Isoflavones, the most abundant phytoestrogens in soy foods, are structurally similar to 17beta-estradiol. Few studies have examined the nociception and stress hormone responses after consumption of soy isoflavones. METHODS: In this study, ovariectomized (OVX) female Long-Evans rats were fed either an isoflavone-rich diet (Phyto-600) or an isoflavone-free diet (Phyto-free). We examined the effects of soy isoflavones on metabolism by measuring body weights, food/water intake, adipose tissue weights as well as serum leptin levels. Also, circulating isoflavone levels were quantified. During chemically induced estrous, nociceptive thresholds were recorded. Then, the animals were subjected to a stressor and stress hormone levels were quantified. RESULTS: Body weights were significantly lower in Phyto-600 fed rats compared to Phyto-free values within one week and during long-term consumption of soy isoflavones. Correspondingly, Phyto-600 fed animals displayed significantly less adipose deposition and lower serum leptin levels than Phyto-free values. However, rats on the Phyto-600 diet displayed greater food/water intake compared to Phyto-free levels. No changes in thermal pain threshold or stress hormone levels (ACTH and corticosterone) were observed after activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. CONCLUSION: In summary, these data show that consumption of soy isoflavones 1) increases metabolism, demonstrated by significantly decreased body weights, adipose tissue deposition and leptin levels, but 2) does not alter nociception or stress hormone responses, as indexed by thermal pain threshold, serum corticosterone and ACTH levels in chemically-induced estrous OVX rats

    Androgen receptor expression in the rat prostate is down-regulated by dietary phytoestrogens

    Get PDF
    BACKGROUND: It is well established that the growth of the prostate gland is a hormone-dependent phenomenon involving both androgenic and estrogenic control. Proliferation of prostate cells is, at least in part, under control of estrogen receptor beta (ER-beta). Phytoestrogens bind ER-beta with high affinity and therefore may have antiproliferative effects in the prostate. METHODS: The prostates of male Long-Evans rats fed a diet high in phytoestrogens (Phyto-600) or very low levels of phytoestrogens (Phyto-free) were analyzed to determine the impact of dietary phytoestrogens on prostate weight and androgen receptor (AR) expression in the prostate. RESULTS: Dietary phytoestrogens significantly decreased post-pubertal prostate weight gain in Phyto-600 vs Phyto-free fed males. Additionally, dietary phytoestrogens (Phyto-600) decreased AR expression in the prostate as determined by in situ hybridization. CONCLUSIONS: Soy phytoestrogens, present in diet, alter prostate growth presumably by binding ER-beta and subsequently reducing AR expression within the prostate

    3α-Androstanediol, but Not Testosterone, Attenuates Age-Related Decrements in Cognitive, Anxiety, and Depressive Behavior of Male Rats

    Get PDF
    Some hippocampally-influenced affective and/or cognitive processes decline with aging. The role of androgens in this process is of interest. Testosterone (T) is aromatized to estrogen, and reduced to dihydrotestosterone (DHT), which is converted to 5α-androstane, 3α, 17α-diol (3α-diol). To determine the extent to which some age-related decline in hippocampally-influenced behaviors may be due to androgens, we examined the effects of variation in androgen levels due to age, gonadectomy, and androgen replacement on cognitive (inhibitory avoidance, Morris water maze) and affective (defensive freezing, forced swim) behavior among young (4 months), middle-aged (13 months), and aged (24 months) male rats. Plasma and hippocampal levels of androgens were determined. In experiment 1, comparisons were made between 4-, 13-, and 24-month-old rats that were intact or gonadectomized (GDX) and administered a T-filled or empty silastic capsule. There was age-related decline in performance of the inhibitory avoidance, water maze, defensive freezing, and forced swim tasks, and hippocampal 3α-diol levels. Chronic, long-term (1–4 weeks) T-replacement reversed the effects of GDX in 4- and 13-month-old, but not 24-month-old, rats in the inhibitory avoidance task. Experiments 2 and 3 assessed whether acute subcutaneous T or 3α-diol, respectively, could reverse age-associated decline in performance. 3α-diol, but not T, compared to vehicle, improved performance in the inhibitory avoidance, water maze, forced swim, and defensive freezing tasks, irrespective of age. Thus, age is associated with a decrease in 3α-diol production and 3α-diol administration reinstates cognitive and affective performance of aged male rats

    Timing of supplementation of selenium and isoflavones determines prostate cancer risk factor reduction in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High dietary intake of selenium or isoflavones reduces risk factors for prostate cancer. We tested whether combined supplementation of these two dietary components would reduce prostate cancer risk factors in rats more than supplementation of each component individually.</p> <p>Methods</p> <p>Male Noble rat pups were exposed from conception to diets containing an adequate (0.33–0.45 mg/kg diet) or high (3.33–3.45 mg/kg) concentration of selenium as Se-methylselenocysteine and a low (10 mg/kg) or high (600 mg/kg) level of isoflavones in a 2 × 2 factorial design. Pups consumed their respective diets until sacrifice at 35, 100, or 200 days. Male Noble rat breeders, whose exposure to the diets began after puberty, were sacrificed at 336 days. Rats were weighed biweekly. Blood was collected at the time of sacrifice and body fat and prostates were dissected and weighed. Serum levels of leptin, IGF-1, and testosterone were determined using ELISA kits. Serum levels of isoflavones were assayed by GC/MS. Liver activity of selenium-dependent glutathione peroxidase 1 was measured as an indicator of selenium status.</p> <p>Results</p> <p>Serum isoflavone concentrations were nearly 100-fold higher at 35 days of age (1187.1 vs. 14.4 ng/mL, mean ± SD) in pups fed the high vs. low isoflavone diets, and remained so at 100 and 200 days, and in breeders. There were no dietary differences in liver glutathione peroxidase activity in pups or breeders. High isoflavone intake significantly (p = 0.001–0.047) reduced body weight in rat pups from 35 days onward, but not in breeders. Body fat and leptin were likewise significantly reduced by high isoflavones in pups while effects in breeders were less pronounced but still significant. High intake of Se and isoflavones each decreased serum IGF-1 in pups at 100 and 200 days, but not in breeders. No consistent dietary effects were observed on serum testosterone or relative weights of prostates. In pups, the combination of high isoflavones and high selenium produced the lowest weight gain, the lowest serum leptin, and the lowest serum IGF-1 concentrations of all four diets.</p> <p>Conclusion</p> <p>Combined intake of high selenium and high isoflavones may achieve greater chemopreventive effects than either compound individually. The timing of supplementation may determine the significance of its effects.</p

    Timing of supplementation of selenium and isoflavones determines prostate cancer risk factor reduction in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High dietary intake of selenium or isoflavones reduces risk factors for prostate cancer. We tested whether combined supplementation of these two dietary components would reduce prostate cancer risk factors in rats more than supplementation of each component individually.</p> <p>Methods</p> <p>Male Noble rat pups were exposed from conception to diets containing an adequate (0.33–0.45 mg/kg diet) or high (3.33–3.45 mg/kg) concentration of selenium as Se-methylselenocysteine and a low (10 mg/kg) or high (600 mg/kg) level of isoflavones in a 2 × 2 factorial design. Pups consumed their respective diets until sacrifice at 35, 100, or 200 days. Male Noble rat breeders, whose exposure to the diets began after puberty, were sacrificed at 336 days. Rats were weighed biweekly. Blood was collected at the time of sacrifice and body fat and prostates were dissected and weighed. Serum levels of leptin, IGF-1, and testosterone were determined using ELISA kits. Serum levels of isoflavones were assayed by GC/MS. Liver activity of selenium-dependent glutathione peroxidase 1 was measured as an indicator of selenium status.</p> <p>Results</p> <p>Serum isoflavone concentrations were nearly 100-fold higher at 35 days of age (1187.1 vs. 14.4 ng/mL, mean ± SD) in pups fed the high vs. low isoflavone diets, and remained so at 100 and 200 days, and in breeders. There were no dietary differences in liver glutathione peroxidase activity in pups or breeders. High isoflavone intake significantly (p = 0.001–0.047) reduced body weight in rat pups from 35 days onward, but not in breeders. Body fat and leptin were likewise significantly reduced by high isoflavones in pups while effects in breeders were less pronounced but still significant. High intake of Se and isoflavones each decreased serum IGF-1 in pups at 100 and 200 days, but not in breeders. No consistent dietary effects were observed on serum testosterone or relative weights of prostates. In pups, the combination of high isoflavones and high selenium produced the lowest weight gain, the lowest serum leptin, and the lowest serum IGF-1 concentrations of all four diets.</p> <p>Conclusion</p> <p>Combined intake of high selenium and high isoflavones may achieve greater chemopreventive effects than either compound individually. The timing of supplementation may determine the significance of its effects.</p

    Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High dietary intake of selenium or soybean isoflavones reduces prostate cancer risk. These components each affect androgen-regulated gene expression. The objective of this work was to determine the combined effects of selenium and isoflavones on androgen-regulated gene expression in rat prostate.</p> <p>Methods</p> <p>Male Noble rats were exposed from conception until 200 days of age to diets containing an adequate (0.33-0.45 mg/kg diet) or high (3.33-3.45 mg/kg) concentration of selenium as Se-methylselenocysteine and a low (10 mg/kg) or high (600 mg/kg) level of isoflavones in a 2 × 2 factorial design. Gene expression in the dorsolateral prostate was determined for the androgen receptor, for androgen-regulated genes, and for Akr1c9, whose product catalyzes the reduction of dihydrotestosterone to 5alpha-androstane-3alpha, 17beta-diol. Activity of hepatic glutathione peroxidise 1 and of prostatic 5alpha reductase were also assayed.</p> <p>Results</p> <p>There were no differences due to diet in activity of liver glutathione peroxidase activity. Total activity of 5alpha reductase in prostate was significantly lower (<it>p </it>= 0.007) in rats fed high selenium/high isoflavones than in rats consuming adequate selenium/low isoflavones. High selenium intake reduced expression of the androgen receptor, Dhcr24 (24-dehydrocholesterol reductase), and Abcc4 (ATP-binding cassette sub-family C member 4). High isoflavone intake decreased expression of Facl3 (fatty acid CoA ligase 3), Gucy1a3 (guanylate cyclase alpha 3), and Akr1c9. For Abcc4 the combination of high selenium/high isoflavones had a greater inhibitory effect than either treatment alone. The effects of selenium on gene expression were always in the direction of chemoprevention</p> <p>Conclusion</p> <p>These results suggest that combined intake of high selenium and high isoflavones may achieve a greater chemopreventive effect than either compound supplemented individually.</p

    Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens

    Get PDF
    BACKGROUND: In learning and memory tasks, requiring visual spatial memory (VSM), males exhibit superior performance to females (a difference attributed to the hormonal influence of estrogen). This study examined the influence of phytoestrogens (estrogen-like plant compounds) on VSM, utilizing radial arm-maze methods to examine varying aspects of memory. Additionally, brain phytoestrogen, calbindin (CALB), and cyclooxygenase-2 (COX-2) levels were determined. RESULTS: Female rats receiving lifelong exposure to a high-phytoestrogen containing diet (Phyto-600) acquired the maze faster than females fed a phytoestrogen-free diet (Phyto-free); in males the opposite diet effect was identified. In a separate experiment, at 80 days-of-age, animals fed the Phyto-600 diet lifelong either remained on the Phyto-600 or were changed to the Phyto-free diet until 120 days-of-age. Following the diet change Phyto-600 females outperformed females switched to the Phyto-free diet, while in males the opposite diet effect was identified. Furthermore, males fed the Phyto-600 diet had significantly higher phytoestrogen concentrations in a number of brain regions (frontal cortex, amygdala & cerebellum); in frontal cortex, expression of CALB (a neuroprotective calcium-binding protein) decreased while COX-2 (an inducible inflammatory factor prevalent in Alzheimer's disease) increased. CONCLUSIONS: Results suggest that dietary phytoestrogens significantly sex-reversed the normal sexually dimorphic expression of VSM. Specifically, in tasks requiring the use of reference, but not working, memory, VSM was enhanced in females fed the Phyto-600 diet, whereas, in males VSM was inhibited by the same diet. These findings suggest that dietary soy derived phytoestrogens can influence learning and memory and alter the expression of proteins involved in neural protection and inflammation in rats
    corecore