406 research outputs found

    Sound Studies Meets Deaf Studies

    Get PDF
    Sound studies and Deaf studies may seem at first impression to operate in worlds apart. We argue in this article, however, that similar renderings of hearing, deafness, and seeing as ideal types - and as often essentialized sensory modes - make it possible to read differences between Sound studies and Deaf studies as sites of possible articulation. We direct attention to four zones of productive overlap, attending to how sound is inferred in deaf and Deaf practice, how reimagining sound in the register of low-frequency vibration can upend deafhearing dichotomies, how “deaf futurists“ champion cyborg sound, and how signing and other non-spoken communicative practices might undo phonocentric models of speech. Sound studies and Deaf studies emerge as fields with much to offer one another epistemologically, theoretically, and practically

    The IASLC Lung Cancer Staging Project: A Renewed Call to Participation

    Get PDF
    Over the past two decades, the International Association for the Study of Lung Cancer (IASLC) Staging Project has been a steady source of evidence-based recommendations for the TNM classification for lung cancer published by the Union for International Cancer Control and the American Joint Committee on Cancer. The Staging and Prognostic Factors Committee of the IASLC is now issuing a call for participation in the next phase of the project, which is designed to inform the ninth edition of the TNM classification for lung cancer. Following the case recruitment model for the eighth edition database, volunteer site participants are asked to submit data on patients whose lung cancer was diagnosed between January 1, 2011, and December 31, 2019, to the project by means of a secure, electronic data capture system provided by Cancer Research And Biostatistics in Seattle, Washington. Alternatively, participants may transfer existing data sets. The continued success of the IASLC Staging Project in achieving its objectives will depend on the extent of international participation, the degree to which cases are entered directly into the electronic data capture system, and how closely externally submitted cases conform to the data elements for the project

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET ITER-like wall divertor

    Get PDF
    corecore