1,987 research outputs found

    Fracture healing following high energy tibial trauma: Ilizarov versus Taylor Spatial Frame

    Get PDF
    Introduction: The optimal treatment of high energy tibial fractures remains controversial and a challenging orthopaedic problem. The role of external fi xators for all these tibial fractures has been shown to be crucial. Methods: A fi ve-year consecutive series was reviewed retrospectively, identifying two treatment groups: Ilizarov and Taylor Spatial Frame (TSF; Smith & Nephew, Memphis, TN, US). Fracture healing time was the primary outcome measure. Results: A total of 112 patients (85 Ilizarov, 37 TSF) were identifi ed for the review with a mean age of 45 years. This was higher in women (57 years) than in men (41 years). There was no signifi cant difference between frame types (p=0.83). The median healing time was 163 days in both groups. There was no signifi cant difference in healing time between smokers and non-smokers (180 vs 165 days respectively, p=0.07), open or closed fractures (p=0.13) or age and healing time (Spearman's r=0.12, p=0.18). There was no incidence of non-union or re-fracture following frame removal in either group. Conclusions: Despite the assumption of the rigid construct of the TSF, the median time to union was similar to that of the Ilizarov frame and the TSF therefore can play a signifi cant role in complex tibial fractures

    MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location

    Get PDF
    Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP) mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre) in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus). Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015), yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors. © 2014 Tirodkar et al

    Developing collaboration skills in first year undergraduate business students

    Full text link
    Collaboration skills are defined as the set of skills and capabilities required to work effectively within and across groups to achieve group goals. The development of these skills are assumed but not taught directly or evaluated in undergraduate group assessments in many university subjects. This paper discusses a research project investigating the development of student collaboration skills in the compulsory first year undergraduate subject 21129 Managing People and Organisations. One of the key aims of the subject is to help students understand and acquire a range of collaboration skills that will enhance their work readiness. During August 2008, 290 student surveys were completed by students after their initial formation into groups during tutorials. These surveys asked students about their past experiences of group work, and their expectations and motivations with respect to group work in this subject over the coming semester. A follow-up survey was conducted in November, and attempts to capture the extent of changes, if any, in student perceptions of their experience developing collaboration skills over the semester. This paper reports on the findings of stage one of this project. An overview of student attitudes and perceptions is presented, as well as findings on the systematic variation of these with respondent characteristics. The finding of a number of statistically significant associations of student satisfaction with the method of group formation employed in tutorials is then discussed as a surprise finding from this research

    Differential effects of pre and post-payment on neurologists' response rates to a postal survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monetary incentives are an effective way of increasing response rates to surveys, though they are generally less effective in physicians, and are more effective when the incentive is paid up-front rather than when made conditional on completion.</p> <p>Methods</p> <p>In this study we examine the effectiveness of pre- and post-completion incentives on the response rates of all the neurologists in the UK to a survey about conversion disorder, using a cluster randomised controlled design. A postal survey was sent to all practicing consultant neurologists, in two rounds, including either a book token, the promise of a book token, or nothing at all.</p> <p>Results</p> <p>Three hundred and fifty-one of 591 eligible neurologists completed the survey, for a response rate of 59%. While the post-completion incentive exerted no discernible influence on response rates, a pre-completion incentive did, with an odds-ratio of 2.1 (95% confidence interval 1.5 - 3.0).</p> <p>Conclusions</p> <p>We conclude that neurologists, in the UK at least, may be influenced to respond to a postal survey by a pre-payment incentive but are unaffected by a promised reward.</p

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur

    Rare coding SNP in DZIP1 gene associated with late-onset sporadic Parkinson's disease

    Get PDF
    We present the first application of the hypothesis-rich mathematical theory to genome-wide association data. The Hamza et al. late-onset sporadic Parkinson's disease genome-wide association study dataset was analyzed. We found a rare, coding, non-synonymous SNP variant in the gene DZIP1 that confers increased susceptibility to Parkinson's disease. The association of DZIP1 with Parkinson's disease is consistent with a Parkinson's disease stem-cell ageing theory.Comment: 14 page

    On the Generalizability of Experimental Results

    Get PDF
    The age-old question of the generalizability of the results of experiments that are conducted in artificial laboratory settings to more realistic inferential and decision making situations is considered in this paper. Conservatism in probability revision provides an example of a result that 1) has received wide attention, including attention in terms of implications for real-world decision making, on the basis of experiments conducted in artificial settings and 2) is now apparently thought by many to be highly situational and not at all a ubiquitous phenomenon, in which case its implications for real-world decision making are not as extensive as originally claimed. In this paper we consider the questions of generalizations from the laboratory to the real world in some detail, both within the context of the experiments regarding conservatism and within a more general context. In addition, we discuss some of the difficulties inherent in experimentation in realistic settings, suggest possible procedures for avoiding or at least alleviating such difficulties, and make a plea for more realistic experiments

    In Situ Proteolysis to Generate Crystals for Structure Determination: An Update

    Get PDF
    For every 100 purified proteins that enter crystallization trials, an average of 30 form crystals, and among these only 13–15 crystallize in a form that enables structure determination. In 2007, Dong et al reported that the addition of trace amounts of protease to crystallization trials—in situ proteolysis—significantly increased the number of proteins in a given set that produce diffraction quality crystals. 69 proteins that had previously resisted structure determination were subjected to crystallization with in situ proteolysis and ten crystallized in a form that led to structure determination (14.5% success rate). Here we apply in situ proteolysis to over 270 new soluble proteins that had failed in the past to produce crystals suitable for structure determination. These proteins had produced no crystals, crystals that diffracted poorly, or produced twinned and/or unmanageable diffraction data. The new set includes yeast and prokaryotic proteins, enzymes essential to protozoan parasites, and human proteins such as GTPases, chromatin remodeling proteins, and tyrosine kinases. 34 proteins yielded deposited crystal structures of 2.8 Å resolution or better, for an overall 12.6% success rate, and at least ten more yielded well-diffracting crystals presently in refinement. The success rate among proteins that had previously crystallized was double that of those that had never before yielded crystals. The overall success rate is similar to that observed in the smaller study, and appears to be higher than any other method reported to rescue stalled protein crystallography projects
    corecore