1,678 research outputs found

    The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector

    Get PDF
    This paper presents an analysis of climate policy instruments for the decarbonisation of the global electricity sector in a non-equilibrium economic and technology diffusion perspective. Energy markets are driven by innovation, path-dependent technology choices and diffusion. However, conventional optimisation models lack detail on these aspects and have limited ability to address the effectiveness of policy interventions because they do not represent decision-making. As a result, known effects of technology lock-ins are liable to be underestimated. In contrast, our approach places investor decision-making at the core of the analysis and investigates how it drives the diffusion of low-carbon technology in a highly disaggregated, hybrid, global macroeconometric model, FTT:Power-E3MG. Ten scenarios to 2050 of the electricity sector in 21 regions exploring combinations of electricity policy instruments are analysed, including their climate impacts. We show that in a diffusion and path-dependent perspective, the impact of combinations of policies does not correspond to the sum of impacts of individual instruments: synergies exist between policy tools. We argue that the carbon price required to break the current fossil technology lock-in can be much lower when combined with other policies, and that a 90% decarbonisation of the electricity sector by 2050 is affordable without early scrapping.This work was supported by the Three Guineas Trust (A. M. Foley), Cambridge Econometrics (H. Pollitt and U. Chewpreecha), Conicyt (Comisión Nacional de Investigación Científica y Tecnológica, Gobierno de Chile) and the Ministerio de Energía, Gobierno de Chile (P. Salas), the EU Seventh Framework Programme grant agreement No 265170 ‘ER-MITAGE’ (N. Edwards and P. Holden) and the UK Engineering and Physical Sciences Research Council, fellowship number EP/K007254/1 (J.-F. Mercure).This is the final published version. It's also available from http://www.sciencedirect.com/science/article/pii/S0301421514004017#

    Elevated CO<sub>2</sub> does not increase eucalypt forest productivity on a low-phosphorus soil

    Get PDF
    Rising atmospheric CO2 stimulates photosynthesis and productivity of forests, offsetting CO2 emissions. Elevated CO2 experiments in temperate planted forests yielded ~23% increases in productivity over the initial years. Whether similar CO2 stimulation occurs in mature evergreen broadleaved forests on low-phosphorus (P) soils is unknown, largely due to lack of experimental evidence. This knowledge gap creates major uncertainties in future climate projections as a large part of the tropics is P-limited. Here,we increased atmospheric CO2 concentration in a mature broadleaved evergreen eucalypt forest for three years, in the first large-scale experiment on a P-limited site. We show that tree growth and other aboveground productivity components did not significantly increase in response to elevated CO2 in three years, despite a sustained 19% increase in leaf photosynthesis. Moreover, tree growth in ambient CO2 was strongly P-limited and increased by ~35% with added phosphorus. The findings suggest that P availability may potentially constrain CO2-enhanced productivity in P-limited forests; hence, future atmospheric CO2 trajectories may be higher than predicted by some models. As a result, coupled climate-carbon models should incorporate both nitrogen and phosphorus limitations to vegetation productivity in estimating future carbon sinks

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin

    Evidence of the Generation of Isosaccharinic Acids and Their Subsequent Degradation by Local Microbial Consortia within Hyper-Alkaline Contaminated Soils, with Relevance to Intermediate Level Radioactive Waste Disposal

    Get PDF
    The contamination of surface environments with hydroxide rich wastes leads to the formation of high pH (>11.0) soil profiles. One such site is a legacy lime works at Harpur Hill, Derbyshire where soil profile indicated in-situ pH values up to pH 12. Soil and porewater profiles around the site indicated clear evidence of the presence of the α and β stereoisomers of isosaccharinic acid (ISA) resulting from the anoxic, alkaline degradation of cellulosic material. ISAs are of particular interest with regards to the disposal of cellulosic materials contained within the intermediate level waste (ILW) inventory of the United Kingdom, where they may influence radionuclide mobility via complexation events occurring within a geological disposal facility (GDF) concept. The mixing of uncontaminated soils with the alkaline leachate of the site resulted in ISA generation, where the rate of generation in-situ is likely to be dependent upon the prevailing temperature of the soil. Microbial consortia present in the uncontaminated soil were capable of surviving conditions imposed by the alkaline leachate and demonstrated the ability to utilise ISAs as a carbon source. Leachate-contaminated soil was sub-cultured in a cellulose degradation product driven microcosm operating at pH 11, the consortia present were capable of the degradation of ISAs and the generation of methane from the resultant H2/CO2 produced from fermentation processes. Following microbial community analysis, fermentation processes appear to be predominated by Clostridia from the genus Alkaliphilus sp, with methanogenesis being attributed to Methanobacterium and Methanomassiliicoccus sp. The study is the first to identify the generation of ISA within an anthropogenic environment and advocates the notion that microbial activity within an ILW-GDF is likely to influence the impact of ISAs upon radionuclide migration

    Alterations in vascular function in primary aldosteronism - a cardiovascular magnetic resonance imaging study

    Get PDF
    Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV).&lt;p&gt;&lt;/p&gt; Methods: We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass.&lt;p&gt;&lt;/p&gt; Results: Subjects with PA had significantly lower aortic distensibilty and higher PWV compared to EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including aging. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular aging. As expected, aortic distensibility and PWV were closely correlated.&lt;p&gt;&lt;/p&gt; Conclusion: These results demonstrate that PA patients display increased arterial stiffness compared to EH, independent of vascular aging. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.&lt;p&gt;&lt;/p&gt

    Climate-carbon cycle uncertainties and the Paris Agreement

    Get PDF
    The Paris Agreement aims to address the gap between existing climate policies and policies consistent with ‘holding the increase in global average temperature to well below 2C’. The feasibility of meeting the target has been questioned both in terms of the possible requirement for negative emissions, and ongoing debate on the sensitivity of the climate-carbon cycle system. Using a sequence of ensembles of a fully dynamic three-dimensional climate-carbon cycle model, forced by emissions from an integrated assessment model of regional-level climate policy, economy, and technological transformation, we show that a reasonable interpretation of the Paris Agreement is still technically achievable. Specifically, limiting peak (decadal) warming to less than 1.7°C, or end-century warming to less than 1.54°C, occurs in 50% of our simulations in a policy scenario without net negative emissions or excessive stringency in any policy domain. We evaluate two mitigation scenarios, with 200 GTC and 307 GTC post-2017 emissions, quantifying spatio-temporal variability of warming, precipitation, ocean acidification and marine productivity. Under rapid decarbonisation decadal variability dominates the mean response in critical regions, with significant implications for decision making, demanding impact methodologies that address non-linear spatio-temporal responses. Ignoring carbon-cycle feedback uncertainties (explaining 47% of peak warming uncertainty) becomes unreasonable under strong mitigation conditions.We acknowledge C-EERNG and Cambridge Econometrics for support, and funding from EPSRC (to J.-F.M., fellowship number EP/ K007254/1); the Newton Fund (to J.-F.M., P.S. and J.E.V., EPSRC grant number EP/N002504/1 and ESRC grant number ES/N013174/1), NERC (to N.R.E., P.H. and H.P., grant number NE/P015093/1), CONICYT (to P.S.), the Philomathia Foundation (to J.E.V.) and Horizon 2020 (to H.E.P. and J.-F.M., the Sim4Nexus project)

    First- and second-order contributions to depth perception in anti-correlated random dot stereograms.

    Get PDF
    The binocular energy model of neural responses predicts that depth from binocular disparity might be perceived in the reversed direction when the contrast of dots presented to one eye is reversed. While reversed-depth has been found using anti-correlated random-dot stereograms (ACRDS) the findings are inconsistent across studies. The mixed findings may be accounted for by the presence of a gap between the target and surround, or as a result of overlap of dots around the vertical edges of the stimuli. To test this, we assessed whether (1) the gap size (0, 19.2 or 38.4 arc min) (2) the correlation of dots or (3) the border orientation (circular target, or horizontal or vertical edge) affected the perception of depth. Reversed-depth from ACRDS (circular no-gap condition) was seen by a minority of participants, but this effect reduced as the gap size increased. Depth was mostly perceived in the correct direction for ACRDS edge stimuli, with the effect increasing with the gap size. The inconsistency across conditions can be accounted for by the relative reliability of first- and second-order depth detection mechanisms, and the coarse spatial resolution of the latter
    corecore