1,862 research outputs found

    Radiative Transitions in Charmonium from Lattice QCD

    Full text link
    Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the ηc,J/ψ\eta_c, J/\psi and χc0\chi_{c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy ξ=3\xi=3 at as∼0.1fma_s \sim 0.1 \mathrm{fm} we find a reasonable gross spectrum and a hyperfine splitting ∼90MeV\sim 90 \mathrm{MeV}, which compares favourably with other improved actions. In general, after extrapolation of lattice data at non-zero Q2Q^2 to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/ψJ/\psi quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.Comment: modified version as publishe

    Calculation of the nucleon axial charge in lattice QCD

    Get PDF
    Protons and neutrons have a rich structure in terms of their constituents, the quarks and gluons. Understanding this structure requires solving Quantum Chromodynamics (QCD). However QCD is extremely complicated, so we must numerically solve the equations of QCD using a method known as lattice QCD. Here we describe a typical lattice QCD calculation by examining our recent computation of the nucleon axial charge.Comment: Prepared for Scientific Discovery through Advanced Computing (SciDAC 2006), Denver, Colorado, June 25-29 200

    Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea

    Get PDF
    Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed.Comment: Talks of J.W. Negele and D.B. Renner at Lattice 200

    Baryon Operators and Baryon Spectroscopy

    Full text link
    The issues involved in a determination of the baryon resonance spectrum in lattice QCD are discussed. The variational method is introduced and the need to construct a sufficient basis of interpolating operators is emphasised. The construction of baryon operators using group-theory techniques is outlined. We find that the use both of quark-field smearing and link-field smearing in the operators is essential firstly to reduce the coupling of operators to high-frequency modes and secondly to reduce the gauge-field fluctuations in correlators. We conclude with a status report of our current investigation of baryon spectroscopy.Comment: Invited talk at Workshop on Computational Hadron Physics, Cyprus, Sept. 14-17, 200

    Nucleon Generalized Parton Distributions from Full Lattice QCD

    Full text link
    We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independent generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.Comment: 40 pages, 49 figures; Revised chiral extrapolations in sections A-K, main conclusions unchange
    • …
    corecore