210 research outputs found

    Boson induced s-wave pairing in dilute boson-fermion mixtures

    Full text link
    We show that in dilute boson-fermion mixtures with fermions in two internal states, even when the bare fermion-fermion interaction is repulsive, the exchange of density fluctuations of the Bose condensate may lead to an effective fermion-fermion attraction, and thus to a Cooper instability in the s-wave channel. We give an analytical method to derive the associated TcT_c in the limit where the phonon branch of the Bogoliubov excitation spectrum of the bosons is important. We find a TcT_c of the same order as for a pure Fermi gas with bare attraction.Comment: 12 pages, no figure

    Comment on "Quantum diffusion of 3-He impurities in solid 4- He"

    Full text link
    In this comment I show that the experimental data on quantum diffusion of 3-He impurities in solid 4-He can be explained using the adopted quasiparticle theory. The contention by E.G. Kisvarsanyi and N.S. Sullivan (KS) in Phys.Rev.B v. 48, 16557 (1993) as well as in their Reply (ibid. v. 55, 3989 (1997)) to the Grigor'ev's Comment (Phys.Rev. B v. 55, 3987 (1997)) that "Pushkarov's theory of phonon scattering fails to fit the data by very large factors" is groundless and may result from their bad arithmetical error. This means that the phonon-impurity scattering mechanism of diffusion is consistent with experiment and its neglecting by KS makes their results questionable.Comment: RevTex, 5 pages, no figures, to be published in Phys.Rev.

    A new type of carbon resistance thermometer with excellent thermal contact at millikelvin temperatures

    Full text link
    Using a new brand of commercially available carbon resistor we built a cryogenic thermometer with an extremely good thermal contact to its thermal environment. Because of its superior thermal contact the thermometer is insensitive to low levels of spurious radio frequency heating. We calibrated our thermometer down to 5mK using a quartz tuning fork He-3 viscometer and measured its thermal resistance and thermal response time.Comment: 5 pages, 4 figure

    Testing quantum correlations in a confined atomic cloud by scattering fast atoms

    Full text link
    We suggest measuring one-particle density matrix of a trapped ultracold atomic cloud by scattering fast atoms in a pure momentum state off the cloud. The lowest-order probability of the inelastic process, resulting in a pair of outcoming fast atoms for each incoming one, turns out to be given by a Fourier transform of the density matrix. Accordingly, important information about quantum correlations can be deduced directly from the differential scattering cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR

    Bcc 4^4He as a Coherent Quantum Solid

    Full text link
    In this work we investigate implications of the quantum nature of bcc 4^{4}% He. We show that it is a unique solid phase with both a lattice structure and an Off-Diagonal Long Range Order of coherently oscillating local electric dipole moments. These dipoles arise from the local motion of the atoms in the crystal potential well, and oscillate in synchrony to reduce the dipolar interaction energy. The dipolar ground-state is therefore found to be a coherent state with a well defined global phase and a three-component complex order parameter. The condensation energy of the dipoles in the bcc phase stabilizes it over the hcp phase at finite temperatures. We further show that there can be fermionic excitations of this ground-state and predict that they form an optical-like branch in the (110) direction. A comparison with 'super-solid' models is also discussed.Comment: 12 pages, 8 figure

    Curvature effects on the surface thickness and tension at the free interface of 4^4He systems

    Full text link
    The thickness WW and the surface energy σA\sigma_A at the free interface of superfluid 4^4He are studied. Results of calculations carried out by using density functionals for cylindrical and spherical systems are presented in a unified way, including a comparison with the behavior of planar slabs. It is found that for large species WW is independent of the geometry. The obtained values of WW are compared with prior theoretical results and experimental data. Experimental data favor results evaluated by adopting finite range approaches. The behavior of σA\sigma_A and WσAW \sigma_A exhibit overshoots similar to that found previously for the central density, the trend of these observables towards their asymptotic values is examined.Comment: 35 pages, TeX, 5 figures, definitive versio

    Variational Calculations for 3^3He Impurities on 4^4He Droplets

    Full text link
    Variational Monte Carlo method is used to calculate ground state properties of 4^4He droplets, containing 70, 112, 168, 240, 330, and 728 particles. The resulting particle and kinetic energy densities are used as an input in the Feynman-Lekner theory for 3^3He impurities. The kinetic energy density of 4^4He atoms and the energy of the 3^3He surface states are compared with the results of previous phenomenological calculations.Comment: 12 pages, in revtex 3.0, with 5 .ps figure

    Surface state atoms and their contribution to the surface tension of quantum liquids

    Full text link
    We investigate the new type of excitations on the surface of liquid helium. These excitations, called surfons, appear because helium atoms have discrete energy level at the liquid surface, being attracted to the surface by the van der Waals force and repulsed at a hard-core interatomic distance. The concentration of the surfons increases with temperature. The surfons propagate along the surface and form a two-dimensional gas. Basing on the simple model of the surfon microscopic structure, we estimate the surfon activation energy and effective mass for both helium isotopes. We also calculate the contribution of the surfons to the temperature dependence of the surface tension. This contribution explains the great and long-standing discrepancy between theory and experiment on this temperature dependence in both helium isotopes. The achieved agreement between our theory and experiment is extremely high. The comparison with experiment allows to extract the surfon activation energy and effective mass. The values of these surfon microscopic parameters are in a reasonable agreement with the calculated from the proposed simple model of surfon structure.Comment: 10 pages, 6 figure

    Granular Solid Hydrodynamics

    Get PDF
    Granular elasticity, an elasticity theory useful for calculating static stress distribution in granular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular temperatures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. For the special case of stationary granular temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity}, a state-of-the-art engineering model.Comment: 42 pages 3 fi

    Structural and dynamical properties of superfluid helium: a density functional approach

    Full text link
    We present a novel density functional for liquid 4He, properly accounting for the static response function and the phonon-roton dispersion in the uniform liquid. The functional is used to study both structural and dynamical properties of superfluid helium in various geometries. The equilibrium properties of the free surface, droplets and films at zero temperature are calculated. Our predictions agree closely to the results of ab initio Monte Carlo calculations, when available. The introduction of a phenomenological velocity dependent interaction, which accounts for backflow effects, is discussed. The spectrum of the elementary excitations of the free surface and films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]
    corecore