1 research outputs found
Projective simulation for artificial intelligence
We propose a model of a learning agent whose interaction with the environment
is governed by a simulation-based projection, which allows the agent to project
itself into future situations before it takes real action. Projective
simulation is based on a random walk through a network of clips, which are
elementary patches of episodic memory. The network of clips changes
dynamically, both due to new perceptual input and due to certain compositional
principles of the simulation process. During simulation, the clips are screened
for specific features which trigger factual action of the agent. The scheme is
different from other, computational, notions of simulation, and it provides a
new element in an embodied cognitive science approach to intelligent action and
learning. Our model provides a natural route for generalization to
quantum-mechanical operation and connects the fields of reinforcement learning
and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes
retaine