24 research outputs found

    Model-based image reconstruction for dynamic cardiac perfusion MRI from sparse data

    Get PDF
    Journal ArticleThe paper presents a novel approach for dynamic magnetic resonance imaging (MRI) cardiac perfusion image reconstruction from sparse k-space data. It formulates the reconstruction problem in an inverse-methods setting. Relevant prior information is incorporated via a parametric model for the perfusion process. This wealth of prior information empowers the proposed method to give high-quality reconstructions from very sparse k-space data. The paper presents reconstruction results using both Cartesian and radial sampling strategies using data simulated from a real acquisition. The proposed method produces high-quality reconstructions using 14% of the k-space data. The model-based approach can potentially greatly benefit cardiac myocardial perfusion studies as well as other dynamic contrast-enhanced MRI applications including tumor imaging

    Reordering for Improved Constrained Reconstruction from Undersampled k-Space Data

    Get PDF
    Recently, there has been a significant interest in applying reconstruction techniques, like constrained reconstruction or compressed sampling methods, to undersampled k-space data in MRI. Here, we propose a novel reordering technique to improve these types of reconstruction methods. In this technique, the intensities of the signal estimate are reordered according to a preprocessing step when applying the constraints on the estimated solution within the iterative reconstruction. The ordering of the intensities is such that it makes the original artifact-free signal monotonic and thus minimizes the finite differences norm if the correct image is estimated; this ordering can be estimated based on the undersampled measured data. Theory and example applications of the method for accelerating myocardial perfusion imaging with respiratory motion and brain diffusion tensor imaging are presented

    Data reordering for improved constrained reconstruction from undersampled k-space data,”

    No full text
    Recommended by Habib Zaidi Recently, there has been a significant interest in applying reconstruction techniques, like constrained reconstruction or compressed sampling methods, to undersampled k-space data in MRI. Here, we propose a novel reordering technique to improve these types of reconstruction methods. In this technique, the intensities of the signal estimate are reordered according to a preprocessing step when applying the constraints on the estimated solution within the iterative reconstruction. The ordering of the intensities is such that it makes the original artifact-free signal monotonic and thus minimizes the finite differences norm if the correct image is estimated; this ordering can be estimated based on the undersampled measured data. Theory and example applications of the method for accelerating myocardial perfusion imaging with respiratory motion and brain diffusion tensor imaging are presented

    Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats

    No full text
    corecore