1,007 research outputs found
International money and international inflation, 1958-1973
Inflation (Finance) ; United Nations Monetary and Financial Conference ; Monetary theory ; International finance
Comparative Transcriptomics and Genomics from Continuous Axenic Media Growth Identifies
Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a Reverse evolution approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media
Desire-state attribution: Benefits of a novel paradigm using the food-sharing behavior of Eurasian jays (Garrulus glandarius).
In recent years, we have investigated the possibility that Eurasian jay food sharing might rely on desire-state attribution. The female's desire for a particular type of food can be decreased by sating her on it (specific satiety) and the food sharing paradigm can be used to test whether the male's sharing pattern reflects the female's current desire. Our previous findings show that the male shares the food that the female currently wants. Here, we consider 3 simpler mechanisms that might explain the male's behavior: behavior reading, lack of self-other differentiation and behavioral rules. We illustrate how we have already addressed these issues and how our food sharing paradigm can be further adapted to answer outstanding questions. The flexibility with which the food sharing paradigm can be applied to rule out alternative mechanisms makes it a useful tool to study desire-state attribution in jays and other species that share food
Can male Eurasian jays disengage from their own current desire to feed the female what she wants?
Humans' predictions of another person's behaviour are regularly influenced by what they themselves might know or want. In a previous study, we found that male Eurasian jays (Garrulus glandarius) could cater for their female partner's current desire when sharing food with her. Here, we tested the extent to which the males' decisions are influenced by their own current desire. When the males' and female's desires matched, males correctly shared the food that was desired by both. When the female's desire differed from their own, the males' decisions were not entirely driven by their own desires, suggesting that males also took the female's desire into account. Thus, the male jays' decisions about their mates' desires are partially biased by their own desire and might be based upon similar processes as those found in humans
Simposio sobre el Mercado de Capitales en Colombia
En esta sección encontrará las siguientes intervenciones:- Consideraciones generales sobre los problemas del mercado de capitales. Documento Simec-M-19 (páginas 338-341)- El mercado de capitales y la redistribución del ingreso, por Roberto Arenas Bonilla. Documento Simec-M-18 (páginas 342-344)- La moda y la economía en el mercado de capitales, por Edward S. Shaw. Documento Simec-14-A (páginas 345-352)- El desarrollo fianciero y la estructura de la economía: México, por Leopoldo Solís M., (páginas 352-357)
Maintaining Structural Stability of Poly(lactic acid): Effects of Multifunctional Epoxy based Reactive Oligomers
In order to reduce the effects of hydrolytic degradation and to maintain sufficient viscosity during processing of biomass based poly(l-lactic acid) (PLLA), various epoxy functional reactive oligomers have been characterized and incorporated into the degraded fragments as chain extenders. The molecular weight of PLLA increased with the increase in functionality of the reactive oligomers. No further increase in molecular weight was observed for oligomers with functionality of greater than five. Under our experimental conditions, no gelation was found even when the highest functionality reactive oligomers were used. This is attributed to the preferential reaction of the carboxylic acid versus the negligible reactivity of the hydroxyl groups, present at the two ends of the degraded PLLA chains, with the epoxy groups. The study provides a clear understanding of the degradation and chain extension reaction of poly(lactic acid) (PLA) with epoxy functional reactive oligomers. It is also shown that a higher functionality and concentration of the reactive oligomers is needed, to bring about a sufficient increase in the molecular weight and hence the hydrolytic stability in circumstances when PLA chains suffer significant degradation during processing
Genetic influences on cost-efficient organization of human cortical functional networks
The human cerebral cortex is a complex network of functionally specialized regions interconnected by axonal fibers, but the organizational principles underlying cortical connectivity remain unknown. Here, we report evidence that one such principle for functional cortical networks involves finding a balance between maximizing communication efficiency and minimizing connection cost, referred to as optimization of network cost-efficiency. We measured spontaneous fluctuations of the blood oxygenation level-dependent signal using functional magnetic resonance imaging in healthy monozygotic (16 pairs) and dizygotic (13 pairs) twins and characterized cost-efficient properties of brain network functional connectivity between 1041 distinct cortical regions. At the global network level, 60% of the interindividual variance in cost-efficiency of cortical functional networks was attributable to additive genetic effects. Regionally, significant genetic effects were observed throughout the cortex in a largely bilateral pattern, including bilateral posterior cingulate and medial prefrontal cortices, dorsolateral prefrontal and superior parietal cortices, and lateral temporal and inferomedial occipital regions. Genetic effects were stronger for cost-efficiency than for other metrics considered, and were more clearly significant in functional networks operating in the 0.09–0.18 Hz frequency interval than at higher or lower frequencies. These findings are consistent with the hypothesis that brain networks evolved to satisfy competitive selection criteria of maximizing efficiency and minimizing cost, and that optimization of network cost-efficiency represents an important principle for the brain's functional organization
Functionalization of CD36 Cardiovascular Disease and Expression Associated Variants by Interdisciplinary High Throughput Analysis.
CD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with platelet CD36 expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located 13kb to 55kb upstream of the CD36 transcriptional start site of transcript ENST00000309881 and 49kb to 92kb upstream of transcript ENST00000447544, demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 and Meg-01 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression of CD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies
Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide
Understanding the influence of macromolecular crowding and nanoparticles on
the formation of in-register -sheets, the primary structural component
of amyloid fibrils, is a first step towards describing \emph{in vivo} protein
aggregation and interactions between synthetic materials and proteins. Using
all atom molecular simulations in implicit solvent we illustrate the effects of
nanoparticle size, shape, and volume fraction on oligomer formation of an
amyloidogenic peptide from the transthyretin protein. Surprisingly, we find
that inert spherical crowding particles destabilize in-register -sheets
formed by dimers while stabilizing -sheets comprised of trimers and
tetramers. As the radius of the nanoparticle increases crowding effects
decrease, implying smaller crowding particles have the largest influence on the
earliest amyloid species. We explain these results using a theory based on the
depletion effect. Finally, we show that spherocylindrical crowders destabilize
the ordered -sheet dimer to a greater extent than spherical crowders,
which underscores the influence of nanoparticle shape on protein aggregation
- …