26 research outputs found

    Does tinnitus "fill in" the silent gaps?

    No full text
    In the basic sciences, many researchers now use gap pre-pulse inhibition of the acoustic startle reflex (GPIAS) to determine if an animal has tinnitus after exposure to an ototoxic drug or intense noise. Tinnitus is assumed to be present if the silent gap in an ongoing narrow band noise (NBN) fails to suppress the startle reflex response evoked by an intense noise burst. The lack of gap pre-pulse inhibition presumably occurs because tinnitus fills in the silent intervals in the background noise. To test the perceptual aspects of this hypothesis, we asked hearing impaired subjects with tinnitus if they could perceive 50 ms silent intervals presented in a NBN, which was located above, below or at the subject′s tinnitus pitch. The same tests were performed on normal hearing subjects without tinnitus. All subjects, with and without tinnitus, could detect the 50 ms gaps. Thus, using the stimulus parameters similar to those employed in animal and human GPIAS studies, we found that the tinnitus percept does not fill in the silent interval in a perceptual gap detection task; however, these finding do not rule out the possibility that tinnitus interferes with pre-attentive filtering of sensory stimuli in the GPIAS sensorimotor gating paradigm

    Personalization of Hearing Aid Fitting Based on Adaptive Dynamic Range Optimization

    No full text
    Adaptive dynamic range optimization (ADRO) is a hearing aid fitting rationale which involves adjusting the gains in a number of frequency bands by using a series of rules. The rules reflect the comparison of the estimated percentile occurrences of the sound levels with the audibility and comfort hearing levels of a person suffering from hearing loss. In the study reported in this paper, a previously developed machine learning method was utilized to personalize the ADRO fitting in order to provide an improved hearing experience as compared to the standard ADRO hearing aid fitting. The personalization was carried out based on the user preference model within the framework of maximum likelihood inverse reinforcement learning. The testing of ten subjects with hearing loss was conducted, which indicated that the personalized ADRO was preferred over the standard ADRO on average by about 10 times. Furthermore, a word recognition experiment was conducted, which showed that the personalized ADRO had no adverse impact on speech understanding as compared to the standard ADRO

    Comparison of salicylate- and quinine-induced tinnitus in rats: development, time course, and evaluation of audiologic correlates

    No full text
    BACKGROUND: Salicylate and quinine have been shown to reliably induce short-term tinnitus when administered at high doses. The present study compared salicylate and quinine-induced tinnitus in rats using the gap prepulse inhibition of acoustic startle (GPIAS). METHODS: Twenty-four rats were divided into 2 groups; the first group (n = 12) was injected with salicylate (300 mg kg -1 d -1), whereas the second (n = 12) was treated with quinine orally at a dose of 200 mg kg -1 d -1. Animals were treated daily for 4 consecutive days. All rats were tested for tinnitus and hearing loss before and 2, 24, 48, 72, and 96 hours after the first drug administration. Tinnitus was assessed using GPIAS; hearing function was measured with distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response. RESULTS: Salicylate treatment induced transient tinnitus with a pitch near 16 kHz starting 2 hours posttreatment, persisting over the 4-day treatment period and disappearing 24 hours later. Animals in the quinine group showed GPIAS changes at a higher pitch (20 kHz); however, changes were more variable among animals, and the mean data were not statistically significant. Hearing function varied across treatments. In the salicylate group, high-level DPOAEs were slightly affected; most changes occurred 2 hours posttreatment. Low-level DPOAEs were affected at all frequencies with a progressive dose-dependent effect. In the quinine group, only high-level DPOAEs were affected, mainly at 16 kHz. CONCLUSION: The present study highlights the similarities and differences in the frequency and the time course of tinnitus and hypoacusis induced by salicylate and quinine. Transient tinnitus was reliably induced pharmacologically with salicylate, whereas hearing loss remained subclinical with only minor changes in DPOAEs

    Altered neuronal intrinsic properties and reduced synaptic transmission of the rat's medial geniculate body in salicylate-induced tinnitus.

    Get PDF
    Sodium salicylate (NaSal), an aspirin metabolite, can cause tinnitus in animals and human subjects. To explore neural mechanisms underlying salicylate-induced tinnitus, we examined effects of NaSal on neural activities of the medial geniculate body (MGB), an auditory thalamic nucleus that provides the primary and immediate inputs to the auditory cortex, by using the whole-cell patch-clamp recording technique in MGB slices. Rats treated with NaSal (350 mg/kg) showed tinnitus-like behavior as revealed by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. NaSal (1.4 mM) decreased the membrane input resistance, hyperpolarized the resting membrane potential, suppressed current-evoked firing, changed the action potential, and depressed rebound depolarization in MGB neurons. NaSal also reduced the excitatory and inhibitory postsynaptic response in the MGB evoked by stimulating the brachium of the inferior colliculus. Our results demonstrate that NaSal alters neuronal intrinsic properties and reduces the synaptic transmission of the MGB, which may cause abnormal thalamic outputs to the auditory cortex and contribute to NaSal-induced tinnitus
    corecore