1 research outputs found
Effects of Bipolar Radiofrequency on Collagen Synthesis from Patients with Brachial Ptosis
Background:. Radiofrequency is frequently used for skin rejuvenation, localized fat elimination and cellulite treatment. It prompts the expression of thermal shock proteins that lead to dermal thickening as a result of collagen synthesis. The authors report a histological and clinical analysis of the arm subdermal changes before and after bipolar radiofrequency treatment plus liposuction to determine their benefits for arm contouring.
Methods:. Inclusion criteria included patients with stage 1, 2a, and 2b brachial ptosis (Duncan classification) and upper limb fat deposits who were considered candidates for third-generation ultrasound-assisted liposculpture plus radiofrequency-assisted lipolysis/skin tightening. Arm subdermal tissue samples (5 mm³) were analyzed before and after the intervention. We used 10% formaldehyde for tissue fixation and stained each sample with hematoxylin/eosin, Masson trichrome, and antibody markers against the cell cycle Ki-67 protein.
Results:. We analyzed a total of 12 biopsies from six patients who meet the inclusion/exclusion criteria. Histological findings with hematoxylin/eosin revealed hyperplastic and metaplastic changes with focal distribution within the papillary and reticular dermis. Masson trichrome staining showed an increase of the characteristic basophilia of thin type-I and type-III collagen fibers. In contrast, molecular analysis reported an increase in fibroblast activity mediated by the activation of the heat shock protein HSP47.
Conclusion:. Radiofrequency may be a great alternative to improve skin retraction in patients with mild to moderate brachial dermatochalasis through the activation of HSP47 heat shock protein and the production of type-I and type-III collagen