151 research outputs found

    An optimized method for 3D fluorescence co-localization applied to human kinetochore protein architecture

    Get PDF
    Two-color fluorescence co-localization in 3D (three-dimension) has the potential to achieve accurate measurements at the nanometer length scale. Here, we optimized a 3D fluorescence co-localization method that uses mean values for chromatic aberration correction to yield the mean separation with ~10 nm accuracy between green and red fluorescently labeled protein epitopes within single human kinetochores. Accuracy depended critically on achieving small standard deviations in fluorescence centroid determination, chromatic aberration across the measurement field, and coverslip thickness. Computer simulations showed that large standard deviations in these parameters significantly increase 3D measurements from their true values. Our 3D results show that at metaphase, the protein linkage between CENP-A within the inner kinetochore and the microtubule-binding domain of the Ndc80 complex within the outer kinetochore is on average ~90 nm. The Ndc80 complex appears fully extended at metaphase and exhibits the same subunit structure in vivo as found in vitro by crystallography

    Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity

    Get PDF
    Cells have evolved a signaling pathway called the spindle assembly checkpoint (SAC) to increase the fidelity of chromosome segregation by generating a “wait anaphase” signal until all chromosomes are properly aligned within the mitotic spindle. It has been proposed that tension generated by the stretch of the centromeric chromatin of bioriented chromosomes stabilizes kinetochore microtubule attachments and turns off SAC activity. Although biorientation clearly causes stretching of the centromeric chromatin, it is unclear whether the kinetochore is also stretched. To test whether intrakinetochore stretch occurs and is involved in SAC regulation, we developed a Drosophila melanogaster S2 cell line expressing centromere identifier–mCherry and Ndc80–green fluorescent protein to mark the inner and outer kinetochore domains, respectively. We observed stretching within kinetochores of bioriented chromosomes by monitoring both inter- and intrakinetochore distances in live cell assays. This intrakinetochore stretch is largely independent of a 30-fold variation in centromere stretch. Furthermore, loss of intrakinetochore stretch is associated with enhancement of 3F3/2 phosphorylation and SAC activation

    Comment on "A centrosome-independent role for gamma-TuRC proteins in the spindle assembly checkpoint"

    Get PDF
    Müller et al. (Reports, 27 October 2006, p. 654) showed that inhibition of the γ-tubulin ring complex (γ-TuRC) activates the spindle assembly checkpoint (SAC), which led them to suggest that γ-TuRC proteins play molecular roles in SAC activation. Because γ-TuRC inhibition leads to pleiotropic spindle defects, which are well known to activate kinetochore-derived checkpoint signaling, we believe that this conclusion is premature

    Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle

    Get PDF
    Continuous poleward movement of tubulin is a hallmark of metaphase spindle dynamics in higher eukaryotic cells and is essential for stable spindle architecture and reliable chromosome segregation. We use quantitative fluorescent speckle microscopy to map with high resolution the spatial organization of microtubule flux in Xenopus laevis egg extract meiotic spindles. We find that the flux velocity decreases near spindle poles by ∼20%. The regional variation is independent of functional kinetochores and centrosomes and is suppressed by inhibition of dynein/dynactin, kinesin-5, or both. Statistical analysis reveals that tubulin flows in two distinct velocity modes. We propose an association of these modes with two architecturally distinct yet spatially overlapping and dynamically cross-linked arrays of microtubules: focused polar microtubule arrays of a uniform polarity and slower flux velocities are interconnected by a dense barrel-like microtubule array of antiparallel polarities and faster flux velocities

    Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics

    Get PDF
    Microtubule plus ends dynamically attach to kinetochores on mitotic chromosomes. We directly imaged this dynamic interface using high resolution fluorescent speckle microscopy and direct labeling of kinetochores in Xenopus extract spindles. During metaphase, kinetochores were stationary and under tension while plus end polymerization and poleward microtubule flux (flux) occurred at velocities varying from 1.5–2.5 μm/min. Because kinetochore microtubules polymerize at metaphase kinetochores, the primary source of kinetochore tension must be the spindle forces that produce flux and not a kinetochore-based mechanism. We infer that the kinetochore resists translocation of kinetochore microtubules through their attachment sites, and that the polymerization state of the kinetochore acts a “slip-clutch” mechanism that prevents detachment at high tension. At anaphase onset, kinetochores switched to depolymerization of microtubule plus ends, resulting in chromosome-to-pole rates transiently greater than flux. Kinetochores switched from persistent depolymerization to persistent polymerization and back again during anaphase, bistability exhibited by kinetochores in vertebrate tissue cells. These results provide the most complete description of spindle microtubule poleward flux to date, with important implications for the microtubule–kinetochore interface and for how flux regulates kinetochore function

    Taxol-Stabilized Microtubules Can Position the Cytokinetic Furrow in Mammalian Cells

    Get PDF
    How microtubules act to position the plane of cell division during cytokinesis is a topic of much debate. Recently, we showed that a subpopulation of stable microtubules extends past chromosomes and interacts with the cell cortex at the site of furrowing, suggesting that these stabilized microtubules may stimulate contractility. To test the hypothesis that stable microtubules can position furrows, we used taxol to rapidly suppress microtubule dynamics during various stages of mitosis in PtK1 cells. Cells with stabilized prometaphase or metaphase microtubule arrays were able to initiate furrowing when induced into anaphase by inhibition of the spindle checkpoint. In these cells, few microtubules contacted the cortex. Furrows formed later than usual, were often aberrant, and did not progress to completion. Images showed that furrowing correlated with the presence of one or a few stable spindle microtubule plus ends at the cortex. Actin, myosin II, and anillin were all concentrated in these furrows, demonstrating that components of the contractile ring can be localized by stable microtubules. Inner centromere protein (INCENP) was not found in these ingressions, confirming that INCENP is dispensable for furrow positioning. Taxol-stabilization of the numerous microtubule-cortex interactions after anaphase onset delayed furrow initiation but did not perturb furrow positioning. We conclude that taxol-stabilized microtubules can act to position the furrow and that loss of microtubule dynamics delays the timing of furrow onset and prevents completion. We discuss our findings relative to models for cleavage stimulation

    A quantitative description of Ndc80 complex linkage to human kinetochores

    Get PDF
    The Ndc80 complex, which mediates end-on attachment of spindle microtubules, is linked to centromeric chromatin in human cells by two inner kinetochore proteins, CENP-T and CENP-C. Here to quantify their relative contributions to Ndc80 recruitment, we combine measurements of kinetochore protein copy number with selective protein depletion assays. This approach reveals about 244 Ndc80 complexes per human kinetochore (∼14 per kinetochore microtubule), 215 CENP-C, 72 CENP-T and only 151 Ndc80s as part of the KMN protein network (1:1:1 Knl1, Mis12 and Ndc80 complexes). Each CENP-T molecule recruits ∼2 Ndc80 complexes; one as part of a KMN network. In contrast, ∼40% of CENP-C recruits only a KMN network. Replacing the CENP-C domain that binds KMN with the CENP-T domain that recruits both an Ndc80 complex and KMN network yielded functional kinetochores. These results provide a quantitative picture of the linkages between centromeric chromatin and the microtubule-binding Ndc80 complex at the human kinetochore

    Anaphase Onset does not Require the Microtubule-Dependent Depletion of Kinetochore and Centromere-Binding Proteins

    Get PDF
    Spindle checkpoint proteins, such as Mad2 and BubR1, and the motors dynein/dynactin and CENP-E usually leave kinetochores prior to anaphase onset by microtubule-dependent mechanisms. Likewise, \u27chromosome passenger proteins\u27 including INCENP are depleted from the centromeres after anaphase onset and then move to the midzone complex, an event that is essential for cytokinesis. Here we test whether the cell cycle changes that occur at anaphase onset require or contribute to the depletion of kinetochore and centromere proteins independent of microtubules. This required the development of a novel non-antibody method to induce precocious anaphase onset in vivo by using a bacterially expressed fragment of the spindle checkpoint protein Mad1 capable of activating the APC/C, called GST-Mad1F10. By injecting PtK1 cells in nocodazole with GST-Mad1F10 and processing the cells for immunofluorescence microscopy after anaphase sister chromatid separation in nocodazole we found that Mad2, BubR1, cytoplasmic dynein, CENP-E and the 3F3/2 phosphoepitope remain on kinetochores. Thus depletion of these proteins (or phosphoepitope) at kinetochores is not required for anaphase onset and anaphase onset does not produce their depletion independent of microtubules. In contrast, both microtubules and anaphase onset are required for depletion of the \u27chromosome passenger\u27 protein INCENP from centromeres, as INCENP does not leave the chromosomes prior to anaphase onset in the presence or absence of microtubules, but does leave the centromeres after anaphase onset in the presence of microtubules

    Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Current Biology 19 (2009): 1210-1215, doi:10.1016/j.cub.2009.05.061.During animal cell division, a gradient of GTP-bound Ran is generated around mitotic chromatin. It is generally accepted that this RanGTP gradient is essential for organizing the spindle since it locally activates critical spindle assembly factors. Here, we show in Xenopus egg extract, where the gradient is best characterized, that spindles can assemble in the absence of a RanGTP gradient. Gradient-free spindle assembly occurred around sperm nuclei but not around chromatin-coated beads and required the chromosomal passenger complex (CPC). Artificial enrichment of CPC activity within hybrid bead arrays containing both immobilized chromatin and the CPC supported local microtubule assembly even in the absence of a RanGTP gradient. We conclude that RanGTP and the CPC constitute the two major molecular signals that spatially promote microtubule polymerization around chromatin. Furthermore, we hypothesize that the two signals mainly originate from discreet physical sites on the chromosomes to localize microtubule assembly around chromatin: a RanGTP signal from any chromatin, and a CPC-dependent signal predominantly generated from centromeric chromatin.This work was supported by the American Cancer Society (grant PF0711401 to T.J. Maresca), the National Cancer Institute (grant CA078048-09 to T.J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J.C. Gatlin and grant GM24364 to E.D. Salmon)

    How the kinetochore couples microtubule force and centromere stretch to move chromosomes

    Get PDF
    The Ndc80 complex (Ndc80, Nuf2, Spc24, Spc25) is a highly conserved kinetochore protein essential for end-on anchorage to spindle microtubule plus-ends and for force generation coupled to plus-end polymerization and depolymerization. Spc24/Spc25 at one end of the Ndc80 complex binds the kinetochore. The N-terminal tail and CH domains of Ndc80 bind microtubules, and an internal domain binds microtubule-associated proteins (MAPs) such as the Dam1 complex. To determine how the microtubule and MAP binding domains of Ndc80 contribute to force production at the kinetochore in budding yeast, we have inserted a FRET tension sensor into the Ndc80 protein about halfway between its microtubule binding and internal loop domains. The data support a mechanical model of force generation at metaphase where the position of the kinetochore relative to the microtubule plus-end reflects the relative strengths of microtubule depolymerization, centromere stretch and microtubule binding interactions with Ndc80 and Dam1 complexes
    corecore