94 research outputs found
The Design and Development of a Potent and Selective Novel Diprolyl Derivative That Binds to the N-Domain of Angiotensin-I Converting Enzyme
Angiotensin-I converting enzyme (ACE)
is a zinc metalloprotease
consisting of two catalytic domains (N- and C-). Most clinical ACE
inhibitor(s) (ACEi) have been shown to inhibit both domains nonselectively,
resulting in adverse effects such as cough and angioedema. Selectively
inhibiting the individual domains is likely to reduce these effects
and potentially treat fibrosis in addition to hypertension. ACEi from
the GVK Biosciences database were inspected for possible N-domain
selective binding patterns. From this set, a diprolyl chemical series
was modeled using docking simulations. The series was expanded based
on key target interactions involving residues known to impart N-domain
selectivity. In total, seven diprolyl compounds were synthesized and
tested for N-domain selective ACE inhibition. One compound with an
aspartic acid in the P<sub>2</sub> position (compound <b>16</b>) displayed potent inhibition (<i>K</i><sub>i</sub> = 11.45
nM) and was 84-fold more selective toward the N-domain. A high-resolution
crystal structure of compound <b>16</b> in complex with the
N-domain revealed the molecular basis for the observed selectivity
Identification of N -Linked Glycosylation Sites in Human Testis Angiotensin-converting Enzyme and Expression of an Active Deglycosylated Form
The sites of glycosylation of Chinese hamster ovary cell expressed testicular angiotensin-converting enzyme (tACE) have been determined by matrix-assisted laser desorption ionization/time of flight/mass spectrometry of peptides generated by proteolytic and cyanogen bromide digestion. Two of the seven potential N-linked glycosylation sites, Asn90 and Asn109, were found to be fully glycosylated by analysis of peptides before and after treatment with a series of glycosidases and with endoproteinase Asp-N. The mass spectra of the glycopeptides exhibit characteristic clusters of peaks which indicate the N-linked glycans in tACE to be mostly of the biantennary, fucosylated complex type. This structural information was used to demonstrate that three other sites, Asn155, Asn337, and Asn586, are partially glycosylated, whereas Asn72 appears to be fully glycosylated. The only potential site that was not modified is Asn620. Sequence analysis of tryptic peptides obtained from somatic ACE (human kidney) identified six glycosylated and one unglycosylated Asn. Only one of these glycosylation sites had a counterpart in tACE. Comparison of the two proteins reveals a pattern in which amino-terminal N-linked sites are preferred. The functional significance of glycosylation was examined with a tACE mutant lacking the O-glycan-rich first amino-terminal 36 residues and truncated at Ser625. When expressed in the presence of the alpha-glucosidase I inhibitor N-butyldeoxynojirimycin and treated with endoglycosidase H to remove all but the terminal N-acetylglucosamine residues, it retained full enzymatic activity, was electrophoretically homogeneous, and is a good candidate for crystallographic studies
Structural basis of Ac-SDKP hydrolysis by Angiotensin-I converting enzyme
Angiotensin-I converting enzyme (ACE) is a zinc dipeptidylcarboxypeptidase with two active domains and plays a key role in the regulation of blood pressure and electrolyte homeostasis, making it the principal target in the treatment of cardiovascular disease. More recently, the tetrapetide N-acetyl-Ser–Asp–Lys–Pro (Ac-SDKP) has emerged as a potent antifibrotic agent and negative regulator of haematopoietic stem cell differentiation which is processed exclusively by ACE. Here we provide a detailed biochemical and structural basis for the domain preference of Ac-SDKP. The high resolution crystal structures of N-domain ACE in complex with the dipeptide products of Ac-SDKP cleavage were obtained and offered a template to model the mechanism of substrate recognition of the enzyme. A comprehensive kinetic study of Ac-SDKP and domain co-operation was performed and indicated domain interactions affecting processing of the tetrapeptide substrate. Our results further illustrate the molecular basis for N-domain selectivity and should help design novel ACE inhibitors and Ac-SDKP analogues that could be used in the treatment of fibrosis disorders
Probing the requirements for dual angiotensin-converting enzyme C-domain selective/neprilysin inhibition
Selective inhibition of the angiotensin-converting enzyme C-domain (cACE) and neprilysin (NEP), leaving the ACE N-domain (nACE) free to degrade bradykinin and other peptides, has the potential to provide the potent antihypertensive and cardioprotective benefits observed for nonselective dual ACE/NEP inhibitors, such as omapatrilat, without the increased risk of adverse effects. We have synthesized three 1-carboxy-3-phenylpropyl dipeptide inhibitors with nanomolar potency based on the previously reported C-domain selective ACE inhibitor lisinopril-tryptophan (LisW) to probe the structural requirements for potent dual cACE/NEP inhibition. Here we report the synthesis, enzyme kinetic data, and high-resolution crystal structures of these inhibitors bound to nACE and cACE, providing valuable insight into the factors driving potency and selectivity. Overall, these results highlight the importance of the interplay between the S1′ and S2′ subsites for ACE domain selectivity, providing guidance for future chemistry efforts toward the development of dual cACE/NEP inhibitors
Shedding the load of hypertension: The proteolytic processing of angiotensin-converting enzyme
A number of membrane proteins are enzymatically cleaved or ‘shed’ from the cell surface, resulting in the modulation of biological events and opening novel pharmaceutical approaches to diverse diseases by targeting shedding. Our focus has been on understanding the shedding of angiotensin-converting enzyme (ACE), an enzyme that plays a pivotal role in blood pressure regulation. The identification of novel hereditary ACE mutations that result in increased ACE shedding has advanced our understanding of the role of ACE shedding in health and disease. Extensive biochemical and molecular analysis has helped to elucidate the mechanism of ACE shedding. These findings point to the potential therapeutic role of targeting shedding in regulating tissue ACE levels in cardiovascular disease
Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril
Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin–angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356–1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 Å resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein–selenolate interaction. These new structures of tACE–SeCap and AnCE–SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity
Novel therapeutic approaches targeting the renin angiotensin system and associated peptides in hypertension and heart failure
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure–regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides
Kinetic and structural characterisation of amyloid-β peptides hydrolysis by human angiotensin-1-converting enzyme
Angiotensin‐1‐converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N‐domain in complex with Aβ fragments. For the physiological Aβ(1–16) peptide, a novel ACE cleavage site was found at His14‐Gln15. Furthermore, Aβ(1–16) was preferentially cleaved by the individual N‐domain; however, the presence of an inactive C‐domain in full‐length somatic ACE (sACE) greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Aβ(4–10)Q and Aβ(4–10)Y, underwent endoproteolytic cleavage at the Asp7‐Ser8 bond with all ACE constructs showing greater catalytic efficiency for Aβ(4–10)Y. Surprisingly, in contrast to Aβ(1–16) and Aβ(4–10)Q, sACE showed positive domain cooperativity and the double C‐domain (CC‐sACE) construct no cooperativity towards Aβ(4–10)Y. The structures of the Aβ peptide–ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C‐terminal P2′ position to the S2′ pocket and recognizes the main chain of the P1′ peptide. It is likely that N‐domain selectivity for the amyloid peptide is conferred through the N‐domain specific S2′ residue Thr358. Additionally, the N‐domain can accommodate larger substrates through movement of the N‐terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain selectivity are more pronounced with the truncated domains compared to the more physiological full‐length forms. DATABASE: The atomic coordinates and structure factors for N‐domain ACE with Aβ peptides 4–10 (5AM8), 10–16 (5AM9), 1–16 (5AMA), 35–42 (5AMB) and (4–10)Y (5AMC) complexes have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ, USA (http://www.rcsb.org/)
A novel angiotensin I-converting enzyme mutation (S333W) impairs N-domain enzymatic cleavage of the anti-fibrotic peptide, AcSDKP
BACKGROUND: Angiotensin I-converting enzyme (ACE) has two functional N- and C-domain active centers that display differences in the metabolism of biologically-active peptides including the hemoregulatory tetrapeptide, Ac-SDKP, hydrolysed preferentially by the N domain active center. Elevated Ac-SDKP concentrations are associated with reduced tissue fibrosis. RESULTS: We identified a patient of African descent exhibiting unusual blood ACE kinetics with reduced relative hydrolysis of two synthetic ACE substrates (ZPHL/HHL ratio) suggestive of the ACE N domain center inactivation. Inhibition of blood ACE activity by anti-catalytic mAbs and ACE inhibitors and conformational fingerprint of blood ACE suggested overall conformational changes in the ACE molecule and sequencing identified Ser333Trp substitution in the N domain of ACE. In silico analysis demonstrated S333W localized in the S 1 pocket of the active site of the N domain with the bulky Trp adversely affecting binding of ACE substrates due to steric hindrance. Expression of mutant ACE (S333W) in CHO cells confirmed altered kinetic properties of mutant ACE and conformational changes in the N domain. Further, the S333W mutant displayed decreased ability (5-fold) to cleave the physiological substrate AcSDKP compared to wild-type ACE. Conclusions and Significance A novel Ser333Trp ACE mutation results in dramatic changes in ACE kinetic properties and lowered clearance of Ac-SDKP. Individuals with this mutation (likely with significantly increased levels of the hemoregulatory tetrapeptide in blood and tissues), may confer protection against fibrosis
The structure of testis angiotensin-converting enzyme in complex with the C domain-specific inhibitor RXPA380.
Angiotensin I-converting enzyme (ACE) is central to the regulation of the renin-angiotensin system and is a key therapeutic target for combating hypertension and related cardiovascular diseases. Currently available drugs bind both active sites of its two homologous domains, although it is now understood that these domains function differently in vivo. The recently solved crystal structures of both domains (N and C) open the door to new domain-specific inhibitor design, taking advantage of the differences between these two large active sites. Here we present the first crystal structure at a resolution of 2.25 Å of testis ACE (identical to the C domain of somatic ACE) with the highly C-domain-specific phosphinic inhibitor, RXPA380. Testis ACE retains the same conformation as seen in previously determined inhibitor complexes, but the RXPA380 central backbone conformation is more similar to that seen for the inhibitor captopril than enalaprilat. The RXPA380 molecule occupies more subsites of the testis ACE active site than the previously determined inhibitors and possesses bulky moieties that extend into the S2′ and S2 subsites. Thus the high affinity of RXPA380 for the testis ACE/somatic ACE C domain is explained by the interaction of these bulky moieties with residues unique to these domains, specifically Phe 391, Val 379, and Val 380, that are not found in the N domain. The characterization of the extended active site and the binding of a potent C-domain-selective inhibitor provide the first structural data for the design of truly domain-specific pharmacophores
- …