596 research outputs found

    Process Evaluation in Action: Lessons Learned from Alabama REACH 2010

    Full text link
    The CDC-funded Alabama Racial and Ethnic Approaches to Community Health (REACH 2010) project is designed to reduce and eliminate disparities in breast and cervical cancer between African American and white women in six rural and three urban counties in Alabama. In this manuscript, we report on the development, implementation, results, and lessons learned from a process evaluation plan initiated during the Phase I planning period of the Alabama REACH 2010 program. The process evaluation plan for Alabama REACH 2010 focused on four main areas of activity that coincided with program objectives: assessing coalition development, building community capacity, conducting a needs assessment, and developing a community action plan. Process evaluation findings indicated that progress made by Alabama REACH 2010 was due, in part, to evaluative feedback. We conclude that process evaluation can be a powerful tool for monitoring and measuring the administrative aspect of a complex, community-based health intervention

    Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    Full text link
    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16×\times16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7^{\circ} FHWM Gaussian-shaped beams with <<1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 ×\times 1017^{-17} W/Hz\sqrt{\mathrm{Hz}}, consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance

    Get PDF
    SummaryAn increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity.Video Abstrac

    DNA methylation predicts age and provides insight into exceptional longevity of bats

    Get PDF
    This work was supported by a Paul G. Allen Frontiers Group grant to S.H., the University of Maryland, College of Computer, Mathematical and Natural Sciences to G.S.W., an Irish Research Council Consolidator Laureate Award to E.C.T., a UKRI Future Leaders Fellowship (MR/T021985/1) to S.C.V. and a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada to P.A.F. S.C.V. and P.D. were supported by a Max Planck Research Group awarded to S.C.V. by the Max Planck Gesellschaft, and S.C.V. and E.Z.L. were supported by a Human Frontiers Science Program Grant (RGP0058/2016) awarded to S.C.V. L.J.G. was supported by an NSERC PGS-D scholarship.Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.Publisher PDFPeer reviewe

    Anti-Angiogenic Therapy Induces Integrin-Linked Kinase 1 Up-Regulation in a Mouse Model of Glioblastoma

    Get PDF
    BACKGROUND: In order to improve our understanding of the molecular pathways that mediate tumor proliferation and angiogenesis, and to evaluate the biological response to anti-angiogenic therapy, we analyzed the changes in the protein profile of glioblastoma in response to treatment with recombinant human Platelet Factor 4-DLR mutated protein (PF4-DLR), an inhibitor of angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: U87-derived experimental glioblastomas were grown in the brain of xenografted nude mice, treated with PF4-DLR, and processed for proteomic analysis. More than fifty proteins were differentially expressed in response to PF4-DLR treatment. Among them, integrin-linked kinase 1 (ILK1) signaling pathway was first down-regulated but then up-regulated after treatment for prolonged period. The activity of PF4-DLR can be increased by simultaneously treating mice orthotopically implanted with glioblastomas, with ILK1-specific siRNA. As ILK1 is related to malignant progression and a poor prognosis in various types of tumors, we measured ILK1 expression in human glioblastomas, astrocytomas and oligodendrogliomas, and found that it varied widely; however, a high level of ILK1 expression was correlated to a poor prognosis. CONCLUSIONS/SIGNIFICANCE: Our results suggest that identifying the molecular pathways induced by anti-angiogenic therapies may help the development of combinatorial treatment strategies that increase the therapeutic efficacy of angiogenesis inhibitors by association with specific agents that disrupt signaling in tumor cells

    Similar Risk of Kidney Failure among Patients with Blinding Diseases Who Receive Ranibizumab, Aflibercept, and Bevacizumab:An Observational Health Data Sciences and Informatics Network Study

    Get PDF
    Purpose: To characterize the incidence of kidney failure associated with intravitreal anti-VEGF exposure; and compare the risk of kidney failure in patients treated with ranibizumab, aflibercept, or bevacizumab. Design: Retrospective cohort study across 12 databases in the Observational Health Data Sciences and Informatics (OHDSI) network. Subjects: Subjects aged ≥ 18 years with ≥ 3 monthly intravitreal anti-VEGF medications for a blinding disease (diabetic retinopathy, diabetic macular edema, exudative age-related macular degeneration, or retinal vein occlusion). Methods: The standardized incidence proportions and rates of kidney failure while on treatment with anti-VEGF were calculated. For each comparison (e.g., aflibercept versus ranibizumab), patients from each group were matched 1:1 using propensity scores. Cox proportional hazards models were used to estimate the risk of kidney failure while on treatment. A random effects meta-analysis was performed to combine each database's hazard ratio (HR) estimate into a single network-wide estimate. Main Outcome Measures: Incidence of kidney failure while on anti-VEGF treatment, and time from cohort entry to kidney failure. Results: Of the 6.1 million patients with blinding diseases, 37 189 who received ranibizumab, 39 447 aflibercept, and 163 611 bevacizumab were included; the total treatment exposure time was 161 724 person-years. The average standardized incidence proportion of kidney failure was 678 per 100 000 persons (range, 0–2389), and incidence rate 742 per 100 000 person-years (range, 0–2661). The meta-analysis HR of kidney failure comparing aflibercept with ranibizumab was 1.01 (95% confidence interval [CI], 0.70–1.47; P = 0.45), ranibizumab with bevacizumab 0.95 (95% CI, 0.68–1.32; P = 0.62), and aflibercept with bevacizumab 0.95 (95% CI, 0.65–1.39; P = 0.60). Conclusions: There was no substantially different relative risk of kidney failure between those who received ranibizumab, bevacizumab, or aflibercept. Practicing ophthalmologists and nephrologists should be aware of the risk of kidney failure among patients receiving intravitreal anti-VEGF medications and that there is little empirical evidence to preferentially choose among the specific intravitreal anti-VEGF agents. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</p
    corecore