264 research outputs found

    Studies of high transverse momentum phenomena in heavy ion collisions using the PHOBOS detector

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 137-149).The use of high-pT particles as calibrated probes has proven to be an effective tool for understanding the properties of the system produced in relativistic heavy ion collisions. In this thesis, two such measurements are presented using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC): 1. The transverse momentum spectra of charged particles produced near mid rapidity in Cu+Cu collisions with center-of-mass energies of 62.4 and 200 GeV per nucleon pair 2. Two-particle correlations with a high transverse momentum trigger particle (pT > 2.5 GeV=c ) in Au+Au collisions at ... 200 GeV over the broad longitudinal acceptance of the PHOBOS detector ... In central Au+Au collisions at 200 GeV, the single-particle yields are suppressed at high-pT by a factor of about five compared to p+p collisions scaled by the number of binary collisions. This is typically understood to be a consequence of energy loss by high-pT partons in the dense QCD medium, as such a suppression is absent in d+Au collisions. In Cu+Cu collisions, the nuclear modification factor, RAA, has been measured relative to p+p data as a function of collision centrality. For the same number of participating nucleons (Npart), RAA is essentially the same for the Cu+Cu and Au+Au systems over the measured range of pT, in spite of the significantly different geometries. At high-pT, the similarity between the two systems can be described by simple, geometric models of parton energy loss. Two-particle angular correlations are a more powerful tool for examining how highpT jets lose energy and how the medium is modified by the deposited energy. In central Au+Au collisions, particle production correlated with a high-pT trigger is strongly modified compared to p+p. Not only is the away-side yield much broader in, the nearside peak of jet fragments now sits atop an unmistakable 'ridge' of correlated partners extending continuously and undiminished all the way to = 4.by Edward Wenger.Ph.D

    System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    Full text link
    We present results on two-particle angular correlations in Cu+Cu and Au+Au collisions at a center of mass energy per nucleon pair of 200 GeV over a broad range of pseudorapidity (η\eta) and azimuthal angle (ϕ\phi) as a function of collision centrality. The PHOBOS detector at RHIC has a uniquely-large angular coverage for inclusive charged particles, which allows for the study of correlations on both long- and short-range scales. A complex two-dimensional correlation structure in Δη\Delta \eta and Δϕ\Delta \phi emerges, which is interpreted in the context of a cluster model. The effective cluster size and decay width are extracted from the two-particle pseudorapidity correlation functions. The effective cluster size found in semi-central Cu+Cu and Au+Au collisions is comparable to that found in proton-proton collisions but a non-trivial decrease of the size with increasing centrality is observed. Moreover, a comparison between results from Cu+Cu and Au+Au collisions shows an interesting scaling of the effective cluster size with the measured fraction of total cross section (which is related to the ratio of the impact parameter to the nuclear radius, b/2Rb/2R), suggesting a geometric origin. Further analysis for pairs from restricted azimuthal regions shows that the effective cluster size at Δϕ180\Delta\phi \sim 180^{\circ} drops more rapidly toward central collisions than the size at Δϕ0\Delta\phi \sim 0^{\circ}. The effect of limited η\eta acceptance on the cluster parameters is also addressed, and a correction is applied to present cluster parameters for full η\eta coverage, leading to much larger effective cluster sizes and widths than previously noted in the literature. These results should provide insight into the hot and dense medium created in heavy ion collisions.Comment: 9 pages, 8 figures, Published in Phys. Rev.

    Measurement of the charge ratio of atmospheric muons with the CMS detector

    Get PDF
    We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/c to 1 TeV/c . The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.), independent of the muon momentum, below 100 GeV/c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at √sNN=2.76 TeV

    Get PDF
    The anisotropy of the azimuthal distributions of charged particles produced in [√ over s[subscript NN]]=2.76 TeV PbPb collisions is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter, v[subscript 2], defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. The anisotropy is presented as a function of transverse momentum (p[subscript T]), pseudorapidity (η) over a broad kinematic range, 0.3<p[subscript T]<20 GeV/c, |η|<2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies

    Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at √s = 7 TeV

    Get PDF
    A search for the standard model Higgs boson (H) decaying to b[bar over b] when produced in association with weak vector bosons (V) is reported for the following modes: W(μν)H, W(eν)H, Z(μμ)H, Z(ee)H and Z(νν)H. The search is performed in a data sample corresponding to an integrated luminosity of 4.7 fb[superscript −1], recorded by the CMS detector in proton–proton collisions at the LHC with a center-of-mass energy of 7 TeV. No significant excess of events above the expectation from background is observed. Upper limits on the VH production cross section times the H→b[bar over b] branching ratio, with respect to the expectations for a standard model Higgs boson, are derived for a Higgs boson in the mass range 110–135 GeV. In this range, the observed 95% confidence level upper limits vary from 3.4 to 7.5 times the standard model prediction; the corresponding expected limits vary from 2.7 to 6.7 times the standard model prediction.European Organization for Nuclear ResearchUnited States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC

    Get PDF
    Results on two-particle angular correlations for charged particles emitted in proton-proton collisions at center-of-mass energies of 0.9, 2.36, and 7 TeV are presented, using data collected with the CMS detector over a broad range of pseudorapidity (η) and azimuthal angle (ϕ). Short-range correlations in Δη, which are studied in minimum bias events, are characterized using a simple “independent cluster” parametrization in order to quantify their strength (cluster size) and their extent in η (cluster decay width). Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity and particle transverse momentum using a 980 nb[superscript −1] data set at 7 TeV. In high multiplicity events, a pronounced structure emerges in the two-dimensional correlation function for particle pairs with intermediate p [subscript T] of 1–3 GeV/c, 2.0 < |Δη| < 4.8 and Δϕ ≈ 0. This is the first observation of such a long-range, near-side feature in two-particle correlation functions in pp or p[−over]p collisions

    Measurement of the production cross section for pairs of isolated photons in pp collisions at √s = 7 TeV

    Get PDF
    The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 pb[superscript −1] is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference Δφ ≲ 2.8 rad.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Search for microscopic black hole signatures at the Large Hadron Collider

    Get PDF
    A search for microscopic black hole production and decay in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 pb[superscript −1]. Events with large total transverse energy are analyzed for the presence of multiple high-energy jets, leptons, and photons, typical of a signal expected from a microscopic black hole. Good agreement with the standard model backgrounds, dominated by QCD multijet production, is observed for various final-state multiplicities and model-independent limits on new physics in these final states are set. Using simple semi-classical approximation, limits on the minimum black hole mass are derived as well, in the range 3.5–4.5 TeV. These are the first direct limits on black hole production at a particle accelerator.European Organization for Nuclear ResearchNational Science Foundation (U.S.)United States. Dept. of Energ

    Measurement of the charge asymmetry in top-quark pair production in proton–proton collisions at √s = 7 TeV

    Get PDF
    The difference in angular distributions between top quarks and antiquarks, commonly referred to as the charge asymmetry, is measured in pp collisions at the LHC with the CMS experiment. The data sample corresponds to an integrated luminosity of 1.09 fb[superscript −1] at a centre-of-mass energy of 7 TeV. Top-quark pairs are selected in the final state with an electron or muon and four or more jets. At least one jet is identified as originating from b-quark hadronization. The charge asymmetry is measured in two variables, one based on the pseudorapidities (η) of the top quarks and the other on their rapidities (y). The results A[η over C] = −0.017 ± 0.032 (stat.)[+0.025 over −0.036] (syst.) and A[y over C] = −0.013 ± 0.028 (stat.)[+0.029 over −0.031] (syst.) are consistent within uncertainties with the standard-model predictions.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Search for the standard model Higgs boson decaying into two photons in pp collisions at √s = 7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a center-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 fb[superscript −1]. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1σ . The global significance of observing an excess with a local significance ⩾3.1σ anywhere in the search range 110–150 GeV is estimated to be 1.8σ. More data are required to ascertain the origin of this excess.United States. Dept. of EnergyNational Science Foundation (U.S.
    corecore