698 research outputs found
Towards Sustainable Rural Development in South Africa through Passive Solar Housing Design
Rural low-cost housing in South Africa is characterised by poor thermal performance, as these houses are designed with no consideration of utilising ambient weather conditions for indoor thermal comfort. Hence, a prototype low-cost energy efficiency house was built based on the principle of passive solar design to avert the energy burden faced by low-cost house dwellers. Passive solar design in this context is the strategic selecting and locating of building envelope components to utilise the ambient weather factor of a house to enhance indoor thermal comfort. The aim of this study is to analyse the thermal performance of the passive solar house. To this effect, the indoor and weather conditions of the house which include air temperature, relative humidity, and solar radiation were monitored. The thermal contribution of the windows was determined from the measured data. In summer, 49% of the whole building air temperature and approximately 85% of its corresponding relative humidity were found within the thermal comfort. Only 23% temperature and 78% relative humidity distributions of the whole building were in the thermal comfort zone in the winter season. The daily cumulative heat contribution of the clerestory windows with no shading material was higher than that of the south-facing windows by 1.08 kWh/m2/windows in summer and 4.45 kWh/m2/windows in winter
Electrical performance results of an energy efficient building with an integrated photovoltaic system
A 3.8 kW rooftop photovoltaic generator has been installed on an energy efficient house built at the University of Fort Hare, Alice campus, South Africa. The system, located on the north facing roof, started generating electrical power in February 2009. In addition to providing electrical energy, the photovoltaic panels also act as the building roofing material. An instrumentation and data acquisition system was installed to record the indoor and outdoor ambient temperature, indoor and outdoor relative humidity, wind speed and direction, solar irradiance, electrical energy produced by the solar panels and the household energy consumption. This paper presents the initial results of the electrical performance of the building integrated photovoltaics (BIPV) generator and energy consumption patterns in the energy efficient house
Implementing building integrated photovoltaics in the housing sector in South Africa
The installation of Building Integrated Photovoltaics (BIPV) has been increasing rapidly throughout the world, yet little, if at all, has been reported in South Africa. The country has abundant solar energy resource estimated to be between 4.5 and 6.5 kWh/m2/day, yet solar energy contributes less than 1% to the country’s energy mix. More than 90% of the country’s primary energy comes from fossil fuels leading to an unsustainable per capita carbon footprint of about 9 tCO2e. Previous research has shown that photovoltaics can significantly augment the constrained fossil fuel generated electricity supply. This paper discusses the practical application of photovoltaics as a building element in energy efficient residential housing. The study also aims to determine the feasibility of implementing BIPV systems in the residential sector in South Africa. An energy efficient solar house was designed using simulation software and constructed. Ordinary solar panels were integrated onto the north facing roof of the house. A data acquisition system that monitors meteorological conditions and BIPV output was installed. It was observed that elevated back of module temperatures reaching up to 75°C on sunny days decreased module efficiency by up to 20% in the afternoon. The temperature profiles reveal that BIPV products can significantly influence indoor heating and cooling loads. The research seeks to raise awareness among housing stakeholders and solar industry policy makers of the feasibility of BIPV in South Africa
Electrical performance results of an energy efficient building with an integrated photovoltaic system
A 3.8 kW rooftop photovoltaic generator has been installed on an energy efficient house built at the University of Fort Hare, Alice campus, South Africa. The system, located on the north facing roof, started generating electrical power in February 2009. In addition to providing electrical energy, the photovoltaic panels also act as the building roofing material. An instrumentation and data acquisition system was installed to record the indoor and outdoor ambient temperature, indoor and outdoor relative humidity, wind speed and direction, solar irradiance, electrical energy produced by the solar panels and the household energy consumption. This paper presents the initial results of the electrical performance of the building integrated photovoltaics (BIPV) generator and energy consumption patterns in the energy efficient house
- …