4 research outputs found

    The Role of Antimatter Searches in the Hunt for Supersymmetric Dark Matter

    Full text link
    We analyze the antimatter yield of supersymmetric (SUSY) models with large neutralino annihilation cross sections. We introduce three benchmark scenarios, respectively featuring bino, wino and higgsino-like lightest neutralinos, and we study in detail the resulting antimatter spectral features. We carry out a systematic and transparent comparison between current and future prospects for direct detection, neutrino telescopes and antimatter searches. We demonstrate that often, in the models we consider, antimatter searches are the only detection channel which already constrains the SUSY parameter space. Particularly large antiprotons fluxes are expected for wino-like lightest neutralinos, while significant antideuteron fluxes result from resonantly annihilating binos. We introduce a simple and general recipe which allows to assess the visibility of a given SUSY model at future antimatter search facilities. We provide evidence that upcoming space-based experiments, like PAMELA or AMS, are going to be, in many cases, the unique open road towards dark matter discovery.Comment: 34 pages, 18 figures; V2: misprints in the labels of fig. 2,3 and 5 correcte

    Direct versus indirect detection in mSUGRA with self-consistent halo models

    Full text link
    We perform a detailed analysis of the detection prospects of neutralino dark matter in the mSUGRA framework. We focus on models with a thermal relic density, estimated with high accuracy using the DarkSUSY package, in the range favored by current precision cosmological measurements. Direct and indirect detection rates are computed implementing two models for the dark matter halo, tracing opposite regimes for the phase of baryon infall, with fully consistent density profiles and velocity distribution functions. This has allowed, for the first time, a fully consistent comparison between direct and indirect detection prospects. We discuss all relevant regimes in the mSUGRA parameter space, underlining relevant effects, and providing the basis for extending the discussion to alternative frameworks. In general, we find that direct detection and searches for antideuterons in the cosmic rays seems to be the most promising ways to search for neutralinos in these scenarios.Comment: 26 pages, 9 figure

    DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically

    Full text link
    The question of the nature of the dark matter in the Universe remains one of the most outstanding unsolved problems in basic science. One of the best motivated particle physics candidates is the lightest supersymmetric particle, assumed to be the lightest neutralino - a linear combination of the supersymmetric partners of the photon, the Z boson and neutral scalar Higgs particles. Here we describe DarkSUSY, a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun. Here we describe the physics behind the package. A detailed manual will be provided with the computer package.Comment: 35 pages, no figure
    corecore