9 research outputs found
Group A streptococcal (GAS) infections amongst children in Europe : Taming the rising tide
A rising tide of Group A streptococcal infections is being reported in several European countries including the UK, Spain, Sweden, France, and Ireland. In this editorial, we shed light on the current scenario and present the discussion on the latest available interim clinical guidelines. We further explore the cause of this sudden rise and the interventional measures needed to tame the rising tide.publishersversio
The new face of monkeypox virus : an emerging global emergency
publishersversio
The virology of human monkeypox virus (hMPXV) : A brief overview
Funding Information: The support of ECOMSIR (European Collaboration of Medical Students in Research) and Riga Stradiņš University (RSU) is greatly acknowledged. Publisher Copyright: © 2022 The AuthorsFirst described in 1958, the human monkeypox virus (hMPXV) is a neglected zoonotic pathogen closely associated with the smallpox virus. The virus usually spreads via close contact with the infected animal or human and has been endemic mostly in parts of the African continent. However, with the recent increase in trade, tourism, and travel, the virus has caused outbreaks in countries outside Africa. The recent outbreak in 2022 has been puzzling given the lack of epidemiological connection and the possible sexual transmission of the virus. Furthermore, there is limited understanding of the structural and pathogenetic mechanisms that are employed by the virus to invade the host cells. Henceforth, it is critical to understand the working apparatus governing the viral-immune interactions to develop effective therapeutical and prophylactic modalities. Hence, in the present short communication, we summarize the previously reported research findings regarding the virology of the human monkeypox virus.publishersversionPeer reviewe
Recent outcomes and challenges of artificial intelligence, machine learning and deep learning applications in neurosurgery
Neurosurgeons receive extensive technical training, which equips them with the knowledge and skills to specialise in various fields and manage the massive amounts of information and decision-making required throughout the various stages of neurosurgery, including preoperative, intraoperative, and postoperative care and recovery. Over the past few years, artificial intelligence (AI) has become more useful in neurosurgery. AI has the potential to improve patient outcomes by augmenting the capabilities of neurosurgeons and ultimately improving diagnostic and prognostic outcomes as well as decision-making during surgical procedures. By incorporating AI into both interventional and non-interventional therapies, neurosurgeons may provide the best care for their patients. AI, machine learning (ML), and deep learning (DL) have made significant progress in the field of neurosurgery. These cutting-edge methods have enhanced patient outcomes, reduced complications, and improved surgical planning
Beta-Thalassemia Minor and SARS-CoV-2: Physiopathology, Prevalence, Severity, Morbidity, and Mortality
Background: Since the first year of the COVID-19 global pandemic, a hypothesis concerning the possible protection/immunity of beta-thalassemia carriers has remained in abeyance. Methods: Three databases (Pubmed Central, Scopus, and Google Scholar) were screened and checked in order to extract all studies about the incidence of confirmed COVID-19 cases, mortality rate, severity assessment, or ICU admission among patients with beta-thalassemia minor, were included in this analysis. The language was limited to English. Studies such as case reports, review studies, and studies that did not have complete data for calculating incidences were excluded. Results and discussion: a total of 3 studies out of 2265 were selected. According to our systematic-review meta-analysis, beta-thalassemia carriers could be less affected by COVID-19 than the general population [IRR = 0.9250 (0.5752; 1.4877)], affected by COVID-19 with a worst severity [OR = 1.5933 (0.4884; 5.1981)], less admissible into the ICU [IRR = 0.3620 (0.0025; 51.6821)], and more susceptible to die from COVID-19 or one of its consequences [IRR = 1.8542 (0.7819; 4.3970)]. However, all of those results remain insignificant with a bad p-value (respectively 0.7479, 0.4400, 0.6881, and 0.1610). Other large case-control or registry studies are needed to confirm these trends
Understanding the complexities of space anaemia in extended space missions: revelations from microgravitational odyssey
Space travel exposes astronauts to several environmental challenges, including microgravity and radiation exposure. To overcome these stressors, the body undergoes various adaptations such as cardiovascular deconditioning, fluid shifts, metabolic changes, and alterations in the state of the bone marrow. Another area of concern is the potential impact of these adaptations on erythrocyte and haemoglobin concentrations, which can lead to what is commonly referred to as space anaemia or microgravity-induced anaemia. It is known that anaemia may result in impaired physical and cognitive performance, making early detection and management crucial for the health and wellbeing of astronauts during extended space missions. However, the effects and mechanisms of space anaemia are not fully understood, and research is underway to determine the extent to which it poses a challenge to astronauts. Further research is needed to clarify the long-term effects of microgravity on the circulatory system and to investigate possible solutions to address spaceflight-induced anaemia. This article reviews the potential link between spaceflight and anaemia, based on existing evidence from simulated studies (e.g., microgravity and radiation studies) and findings from spaceflight studies (e.g., International Space Station and space shuttle missions)