31 research outputs found

    Seprase: An overview of an important matrix serine protease

    Get PDF
    Seprase or Fibroblast Activation Protein (FAP) is an integral membrane serine peptidase, which has been shown to have gelatinase activity. Seprase has a dual function in tumour progression. The proteolytic activity of Seprase has been shown to promote cell invasiveness towards the ECM and also to support tumour growth and proliferation. Seprase appears to act as a proteolytically active 170-kDa dimer, consisting of two 97- kDa subunits. It is a member of the group type II integral serine proteases, which includes dipeptidyl peptidase IV (DPPIV/CD26) and related type II transmembrane prolyl serine peptidases, which exert their mechanisms of action on the cell surface. DPPIV and Seprase exhibit multiple functions due to their abilities to form complexes with each other and to interact with other membrane-associated molecules. Localisation of these protease complexes at cell surface protrusions, called invadopodia, may have a prominent role in processing soluble factors and in the degradation of extracellular matrix components that are essential to the cellular migration and matrix invasion that occur during tumour invasion, metastasis and angiogenesis

    Inhibition of fibroblast activation protein and dipeptidylpeptidase 4 increases cartilage invasion by rheumatoid arthritis synovial fibroblasts

    Full text link
    OBJECTIVE: Since fibroblasts in the synovium of patients with rheumatoid arthritis (RA) express the serine proteases fibroblast activation protein (FAP) and dipeptidylpeptidase 4 (DPP-4)/CD26, we undertook the current study to determine the functional role of both enzymes in the invasion of RA synovial fibroblasts (RASFs) into articular cartilage. METHODS: Expression of FAP and DPP-4/CD26 by RASFs was analyzed using fluorescence-activated cell sorting and immunocytochemistry. Serine protease activity was measured by cleavage of fluorogenic substrates and inhibited upon treatment with L-glutamyl L-boroproline. The induction and expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in RASFs were detected using real-time polymerase chain reaction. Densitometric measurements of MMPs using immunoblotting confirmed our findings on the messenger RNA level. Stromal cell-derived factor 1 (SDF-1 [CXCL12]), MMP-1, and MMP-3 protein levels were measured using enzyme-linked immunosorbent assay. The impact of FAP and DPP-4/CD26 inhibition on the invasiveness of RASFs was analyzed in the SCID mouse coimplantation model of RA using immunohistochemistry. RESULTS: Inhibition of serine protease activity of FAP and DPP-4/CD26 in vitro led to increased levels of SDF-1 in concert with MMP-1 and MMP-3, which are downstream effectors of SDF-1 signaling. Using the SCID mouse coimplantation model, inhibition of enzymatic activity in vivo significantly promoted invasion of xenotransplanted RASFs into cotransplanted human cartilage. Zones of cartilage resorption were infiltrated by FAP-expressing RASFs and marked by a significantly higher accumulation of MMP-1 and MMP-3, when compared with controls. CONCLUSION: Our results indicate a central role for the serine protease activity of FAP and DPP-4/CD26 in protecting articular cartilage against invasion by synovial fibroblasts in RA
    corecore