849 research outputs found
Distributed Algorithms for Spectrum Allocation, Power Control, Routing, and Congestion Control in Wireless Networks
We develop distributed algorithms to allocate resources in multi-hop wireless
networks with the aim of minimizing total cost. In order to observe the
fundamental duplexing constraint that co-located transmitters and receivers
cannot operate simultaneously on the same frequency band, we first devise a
spectrum allocation scheme that divides the whole spectrum into multiple
sub-bands and activates conflict-free links on each sub-band. We show that the
minimum number of required sub-bands grows asymptotically at a logarithmic rate
with the chromatic number of network connectivity graph. A simple distributed
and asynchronous algorithm is developed to feasibly activate links on the
available sub-bands. Given a feasible spectrum allocation, we then design
node-based distributed algorithms for optimally controlling the transmission
powers on active links for each sub-band, jointly with traffic routes and user
input rates in response to channel states and traffic demands. We show that
under specified conditions, the algorithms asymptotically converge to the
optimal operating point.Comment: 14 pages, 5 figures, submitted to IEEE/ACM Transactions on Networkin
Asymptotically Optimal Multiple-access Communication via Distributed Rate Splitting
We consider the multiple-access communication problem in a distributed
setting for both the additive white Gaussian noise channel and the discrete
memoryless channel. We propose a scheme called Distributed Rate Splitting to
achieve the optimal rates allowed by information theory in a distributed
manner. In this scheme, each real user creates a number of virtual users via a
power/rate splitting mechanism in the M-user Gaussian channel or via a random
switching mechanism in the M-user discrete memoryless channel. At the receiver,
all virtual users are successively decoded. Compared with other multiple-access
techniques, Distributed Rate Splitting can be implemented with lower complexity
and less coordination. Furthermore, in a symmetric setting, we show that the
rate tuple achieved by this scheme converges to the maximum equal rate point
allowed by the information-theoretic bound as the number of virtual users per
real user tends to infinity. When the capacity regions are asymmetric, we show
that a point on the dominant face can be achieved asymptotically. Finally, when
there is an unequal number of virtual users per real user, we show that
differential user rate requirements can be accommodated in a distributed
fashion.Comment: Submitted to the IEEE Transactions on Information Theory. 15 Page
Tiny Codes for Guaranteeable Delay
Future 5G systems will need to support ultra-reliable low-latency
communications scenarios. From a latency-reliability viewpoint, it is
inefficient to rely on average utility-based system design. Therefore, we
introduce the notion of guaranteeable delay which is the average delay plus
three standard deviations of the mean. We investigate the trade-off between
guaranteeable delay and throughput for point-to-point wireless erasure links
with unreliable and delayed feedback, by bringing together signal flow
techniques to the area of coding. We use tiny codes, i.e. sliding window by
coding with just 2 packets, and design three variations of selective-repeat ARQ
protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by
Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the
receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii)
Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting
the performance of these protocols with uncoded ARQ, we demonstrate that HARQ
performs only slightly better, cumulative feedback-based ARQ does not provide
significant throughput while it has better average delay, and Coded ARQ can
provide gains up to about 40% in terms of throughput. Coded ARQ also provides
delay guarantees, and is robust to various challenges such as imperfect and
delayed feedback, burst erasures, and round-trip time fluctuations. This
feature may be preferable for meeting the strict end-to-end latency and
reliability requirements of future use cases of ultra-reliable low-latency
communications in 5G, such as mission-critical communications and industrial
control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network
- …