2,740 research outputs found
Optimal measurement precision of a nonlinear interferometer
We study the best attainable measurement precision when a double-well trap
with bosons inside acts as an interferometer to measure the energy difference
of the atoms on the two sides of the trap. We introduce time independent
perturbation theory as the main tool in both analytical arguments and numerical
computations. Nonlinearity from atom-atom interactions will not indirectly
allow the interferometer to beat the Heisenberg limit, but in many regimes of
the operation the Heisenberg limit scaling of measurement precision is
preserved in spite of added tunneling of the atoms and atom-atom interactions,
often even with the optimal prefactor.Comment: very close to published versio
Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap
We present a perturbative reconstruction method to make a skymap of
gravitational-wave backgrounds (GWBs) observed via space-based interferometer.
In the presence of anisotropies in GWBs, the cross-correlated signals of
observed GWBs are inherently time-dependent due to the non-stationarity of the
gravitational-wave detector. Since the cross-correlated signal is obtained
through an all-sky integral of primary signals convolving with the antenna
pattern function of gravitational-wave detectors, the non-stationarity of
cross-correlated signals, together with full knowledge of antenna pattern
functions, can be used to reconstruct an intensity map of the GWBs. Here, we
give two simple methods to reconstruct a skymap of GWBs based on the
perturbative expansion in low-frequency regime. The first one is based on
harmonic-Fourier representation of data streams and the second is based on
"direct" time-series data. The latter method enables us to create a skymap in a
direct manner. The reconstruction technique is demonstrated in the case of the
Galactic gravitational wave background observed via planned space
interferometer, LISA. Although the angular resolution of low-frequency skymap
is rather restricted, the methodology presented here would be helpful in
discriminating the GWBs of galactic origins by those of the extragalactic
and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres
Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71
We report on archival Hubble Space Telescope (HST) observations of the
globular cluster M71 (NGC 6838). These observations, covering the core of the
globular cluster, were performed by the Advanced Camera for Surveys (ACS) and
the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h =
1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29
Chandra X-ray sources while outside the half-mass radius, 6 possible optical
counterparts to 4 X-ray sources are found. Based on the X-ray and optical
properties of the identifications, we find 1 certain and 7 candidate
cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain
and potential chromospherically active binaries (ABs), respectively. The only
star in the error circle of the known millisecond pulsar (MSP) is inconsistent
with being the optical counterpart. The number of X-ray faint sources with
L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations
from other clusters on the basis of either collision frequency or mass. Since
the core density of M71 is relatively low, we suggest that those CVs and ABs
are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
Cylindrical gravitational waves in expanding universes: Models for waves from compact sources
New boundary conditions are imposed on the familiar cylindrical gravitational
wave vacuum spacetimes. The new spacetime family represents cylindrical waves
in a flat expanding (Kasner) universe. Space sections are flat and nonconical
where the waves have not reached and wave amplitudes fall off more rapidly than
they do in Einstein-Rosen solutions, permitting a more regular null inifinity.Comment: Minor corrections to references. A note added in proo
Reconstructing a Simple Polytope from its Graph
Blind and Mani (1987) proved that the entire combinatorial structure (the
vertex-facet incidences) of a simple convex polytope is determined by its
abstract graph. Their proof is not constructive. Kalai (1988) found a short,
elegant, and algorithmic proof of that result. However, his algorithm has
always exponential running time. We show that the problem to reconstruct the
vertex-facet incidences of a simple polytope P from its graph can be formulated
as a combinatorial optimization problem that is strongly dual to the problem of
finding an abstract objective function on P (i.e., a shelling order of the
facets of the dual polytope of P). Thereby, we derive polynomial certificates
for both the vertex-facet incidences as well as for the abstract objective
functions in terms of the graph of P. The paper is a variation on joint work
with Michael Joswig and Friederike Koerner (2001).Comment: 14 page
Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems
We consider geometric instances of the Maximum Weighted Matching Problem
(MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000
vertices. Making use of a geometric duality relationship between MWMP, MTSP,
and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields
in near-linear time solutions as well as upper bounds. Using various
computational tools, we get solutions within considerably less than 1% of the
optimum.
An interesting feature of our approach is that, even though an FWP is hard to
compute in theory and Edmonds' algorithm for maximum weighted matching yields a
polynomial solution for the MWMP, the practical behavior is just the opposite,
and we can solve the FWP with high accuracy in order to find a good heuristic
solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental
Algorithms, 200
Interaction of intense vuv radiation with large xenon clusters
The interaction of atomic clusters with short, intense pulses of laser light
to form extremely hot, dense plasmas has attracted extensive experimental and
theoretical interest. The high density of atoms within the cluster greatly
enhances the atom--laser interaction, while the finite size of the cluster
prevents energy from escaping the interaction region. Recent technological
advances have allowed experiments to probe the laser--cluster interaction at
very high photon energies, with interactions much stronger than suggested by
theories for lower photon energies. We present a model of the laser--cluster
interaction which uses non-perturbative R-matrix techniques to calculate
inverse bremsstrahlung and photoionization cross sections for Herman-Skillman
atomic potentials. We describe the evolution of the cluster under the influence
of the processes of inverse bremsstrahlung heating, photoionization,
collisional ionization and recombination, and expansion of the cluster. We
compare charge state distribution, charge state ejection energies, and total
energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature
{\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.}
[Phys. Rev. Lett. {\bf 95}, 063402 (2005)]
A Strong Upper Limit on the Pulsed Radio Luminosity of the Compact Object 1RXS J141256.0+792204
The ROSAT X-ray source 1RXS J141256.0+792204 has recently been identified as
a likely compact object whose properties suggest it could be a very nearby
radio millisecond pulsar at d = 80 - 260pc. We investigated this hypothesis by
searching for radio pulsations using the Westerbork Synthesis Radio Telescope.
We observed 1RXS J141256.0+792204 at 385 and 1380MHz, recording at high time
and frequency resolution in order to maintain sensitivity to millisecond
pulsations. These data were searched both for dispersed single pulses and using
Fourier techniques sensitive to constant and orbitally modulated periodicities.
No radio pulsations were detected in these observations, resulting in pulsed
radio luminosity limits of L_400 ~ 0.3 (d/250pc)^2 mJy kpc^2 and L_1400 ~ 0.03
(d/250pc)^2 mJy kpc^2 at 400 and 1400MHz respectively. The lack of detectable
radio pulsations from 1RXS J141256.0+792204 brings into question its
identification as a nearby radio pulsar, though, because the pulsar could be
beamed away from us, this hypothesis cannot be strictly ruled out.Comment: To appear in A&A. 3 page
Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model
We present a symmetry-projected configuration mixing scheme to describe
ground and excited states, with well defined quantum numbers, of the
two-dimensional Hubbard model with nearestneighbor hopping and periodic
boundary conditions. Results for the half-filled 2{\times}4, 4{\times}4, and
6{\times}6 lattices, as well as doped 4 {\times} 4 systems, compare well with
available results, both exact and from other state-of-the-art approximations.
We report spectral functions and density of states obtained from a
well-controlled ansatz for the (Ne {\pm} 1)-electron system. Symmetry projected
methods have been widely used for the many-body nuclear physics problem but
have received little attention in the solid state community. Given their
relatively low (mean-field) computational cost and the high quality of results
here reported, we believe that they deserve further scrutiny
- …