2,740 research outputs found

    Optimal measurement precision of a nonlinear interferometer

    Full text link
    We study the best attainable measurement precision when a double-well trap with bosons inside acts as an interferometer to measure the energy difference of the atoms on the two sides of the trap. We introduce time independent perturbation theory as the main tool in both analytical arguments and numerical computations. Nonlinearity from atom-atom interactions will not indirectly allow the interferometer to beat the Heisenberg limit, but in many regimes of the operation the Heisenberg limit scaling of measurement precision is preserved in spite of added tunneling of the atoms and atom-atom interactions, often even with the optimal prefactor.Comment: very close to published versio

    Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap

    Full text link
    We present a perturbative reconstruction method to make a skymap of gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In the presence of anisotropies in GWBs, the cross-correlated signals of observed GWBs are inherently time-dependent due to the non-stationarity of the gravitational-wave detector. Since the cross-correlated signal is obtained through an all-sky integral of primary signals convolving with the antenna pattern function of gravitational-wave detectors, the non-stationarity of cross-correlated signals, together with full knowledge of antenna pattern functions, can be used to reconstruct an intensity map of the GWBs. Here, we give two simple methods to reconstruct a skymap of GWBs based on the perturbative expansion in low-frequency regime. The first one is based on harmonic-Fourier representation of data streams and the second is based on "direct" time-series data. The latter method enables us to create a skymap in a direct manner. The reconstruction technique is demonstrated in the case of the Galactic gravitational wave background observed via planned space interferometer, LISA. Although the angular resolution of low-frequency skymap is rather restricted, the methodology presented here would be helpful in discriminating the GWBs of galactic origins by those of the extragalactic and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres

    Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71

    Full text link
    We report on archival Hubble Space Telescope (HST) observations of the globular cluster M71 (NGC 6838). These observations, covering the core of the globular cluster, were performed by the Advanced Camera for Surveys (ACS) and the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h = 1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29 Chandra X-ray sources while outside the half-mass radius, 6 possible optical counterparts to 4 X-ray sources are found. Based on the X-ray and optical properties of the identifications, we find 1 certain and 7 candidate cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain and potential chromospherically active binaries (ABs), respectively. The only star in the error circle of the known millisecond pulsar (MSP) is inconsistent with being the optical counterpart. The number of X-ray faint sources with L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations from other clusters on the basis of either collision frequency or mass. Since the core density of M71 is relatively low, we suggest that those CVs and ABs are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Cylindrical gravitational waves in expanding universes: Models for waves from compact sources

    Get PDF
    New boundary conditions are imposed on the familiar cylindrical gravitational wave vacuum spacetimes. The new spacetime family represents cylindrical waves in a flat expanding (Kasner) universe. Space sections are flat and nonconical where the waves have not reached and wave amplitudes fall off more rapidly than they do in Einstein-Rosen solutions, permitting a more regular null inifinity.Comment: Minor corrections to references. A note added in proo

    Reconstructing a Simple Polytope from its Graph

    Full text link
    Blind and Mani (1987) proved that the entire combinatorial structure (the vertex-facet incidences) of a simple convex polytope is determined by its abstract graph. Their proof is not constructive. Kalai (1988) found a short, elegant, and algorithmic proof of that result. However, his algorithm has always exponential running time. We show that the problem to reconstruct the vertex-facet incidences of a simple polytope P from its graph can be formulated as a combinatorial optimization problem that is strongly dual to the problem of finding an abstract objective function on P (i.e., a shelling order of the facets of the dual polytope of P). Thereby, we derive polynomial certificates for both the vertex-facet incidences as well as for the abstract objective functions in terms of the graph of P. The paper is a variation on joint work with Michael Joswig and Friederike Koerner (2001).Comment: 14 page

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    Interaction of intense vuv radiation with large xenon clusters

    Full text link
    The interaction of atomic clusters with short, intense pulses of laser light to form extremely hot, dense plasmas has attracted extensive experimental and theoretical interest. The high density of atoms within the cluster greatly enhances the atom--laser interaction, while the finite size of the cluster prevents energy from escaping the interaction region. Recent technological advances have allowed experiments to probe the laser--cluster interaction at very high photon energies, with interactions much stronger than suggested by theories for lower photon energies. We present a model of the laser--cluster interaction which uses non-perturbative R-matrix techniques to calculate inverse bremsstrahlung and photoionization cross sections for Herman-Skillman atomic potentials. We describe the evolution of the cluster under the influence of the processes of inverse bremsstrahlung heating, photoionization, collisional ionization and recombination, and expansion of the cluster. We compare charge state distribution, charge state ejection energies, and total energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature {\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.} [Phys. Rev. Lett. {\bf 95}, 063402 (2005)]

    A Strong Upper Limit on the Pulsed Radio Luminosity of the Compact Object 1RXS J141256.0+792204

    Full text link
    The ROSAT X-ray source 1RXS J141256.0+792204 has recently been identified as a likely compact object whose properties suggest it could be a very nearby radio millisecond pulsar at d = 80 - 260pc. We investigated this hypothesis by searching for radio pulsations using the Westerbork Synthesis Radio Telescope. We observed 1RXS J141256.0+792204 at 385 and 1380MHz, recording at high time and frequency resolution in order to maintain sensitivity to millisecond pulsations. These data were searched both for dispersed single pulses and using Fourier techniques sensitive to constant and orbitally modulated periodicities. No radio pulsations were detected in these observations, resulting in pulsed radio luminosity limits of L_400 ~ 0.3 (d/250pc)^2 mJy kpc^2 and L_1400 ~ 0.03 (d/250pc)^2 mJy kpc^2 at 400 and 1400MHz respectively. The lack of detectable radio pulsations from 1RXS J141256.0+792204 brings into question its identification as a nearby radio pulsar, though, because the pulsar could be beamed away from us, this hypothesis cannot be strictly ruled out.Comment: To appear in A&A. 3 page

    Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model

    Full text link
    We present a symmetry-projected configuration mixing scheme to describe ground and excited states, with well defined quantum numbers, of the two-dimensional Hubbard model with nearestneighbor hopping and periodic boundary conditions. Results for the half-filled 2{\times}4, 4{\times}4, and 6{\times}6 lattices, as well as doped 4 {\times} 4 systems, compare well with available results, both exact and from other state-of-the-art approximations. We report spectral functions and density of states obtained from a well-controlled ansatz for the (Ne {\pm} 1)-electron system. Symmetry projected methods have been widely used for the many-body nuclear physics problem but have received little attention in the solid state community. Given their relatively low (mean-field) computational cost and the high quality of results here reported, we believe that they deserve further scrutiny
    • …
    corecore