86 research outputs found
The Impact of Profit Taxation on Capitalized Investment with Options to Delay and Divest
In entrepreneurial decisions making uncertain future profits often are a main characteristics of real investment opportunities. If investors can react to uncertainty the degree of irreversibility and timing flexibility inherent in the available project should be integrated into the decision calculus. In this paper we investigate the interdependencies of effects from profit taxation and real options. We model an investment decision including an option to invest and an option to abandon. We show that increasing the tax rate can lead to paradoxical tax effects, i.e. may foster an investor's willingness to invest into a capitalized investment. Instead, if we abstract from the possibility to abandon the investment object such paradoxical effect cannot be identified. Determining the after-tax value of the option to enter the investment project with and without an abandonment option we receive a critical cash flow cutoff level. We find that the value of the option to abandon depends on the tax rate and the amount of periodical cash flows. The option value can be increasing or decreasing in the tax rate. We find scenarios with paradoxical tax effects and show that the observed paradoxical effects are due to the presence of the real abandonment option itself. This finding contributes to the stream of literature that explains potential sources of paradoxical tax effects. The generated decision rules are helpful for investors facing risky investment opportunities and for discussing the economic impact of tax reforms. Furthermore, we highlight the overwhelming importance of integrating taxes in typically applied valuation approaches
Role of Cancer Microenvironment in Metastasis: Focus on Colon Cancer
One person on three will receive a diagnostic of cancer during his life. About one third of them will die of the disease. In most cases, death will result from the formation of distal secondary sites called metastases. Several events that lead to cancer are under genetic control. In particular, cancer initiation is tightly associated with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations lead to unrestrained growth of the primary neoplasm and a propensity to detach and to progress through the subsequent steps of metastatic dissemination. This process depends tightly on the surrounding microenvironment. In fact, several studies support the point that tumour development relies on a continuous cross-talk between cancer cells and their cellular and extracellular microenvironments. This signaling cross-talk is mediated by transmembrane receptors expressed on cancer cells and stromal cells. The aim of this manuscript is to review how the cancer microenvironment influences the journey of a metastatic cell taking liver invasion by colorectal cancer cells as a model
Lewis Base Mediated β-Elimination and Lewis Acid Mediated Insertion Reactions of Disilazido Zirconium Compounds
The reactivity of a series of disilazido zirconocene complexes is dominated by the migration of anionic groups (hydrogen, alkyl, halide, OTf) between the zirconium and silicon centers. The direction of these migrations is controlled by the addition of two-electron donors (Lewis bases) or two-electron acceptors (Lewis acids). The cationic nonclassical [Cp2ZrN(SiHMe2)2]+ ([2]+) is prepared from Cp2Zr{N(SiHMe2)2}H (1) and B(C6F5)3 or [Ph3C][B(C6F5)4], while reactions of B(C6F5)3 and Cp2Zr{N(SiHMe2)2}R (R = Me (3), Et (5), n-C3H7 (7), CH═CHSiMe3 (9)) provide a mixture of [2]+ and [Cp2ZrN(SiHMe2)(SiRMe2)]+. The latter products are formed through B(C6F5)3 abstraction of a β-H and R group migration from Zr to the β-Si center. Related β-hydrogen abstraction and X group migration reactions are observed for Cp2Zr{N(SiHMe2)2}X (X = OTf (11), Cl (13), OMe (15), O-i-C3H7 (16)). Alternatively, addition of DMAP (DMAP = 4-(dimethylamino)pyridine) to [2]+ results in coordination to a Si center and hydrogen migration to zirconium, giving the cationic complex [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}H]+ ([19]+). Related hydrogen migration occurs from [Cp2ZrN(SiHMe2)(SiMe2OCHMe2)]+ ([18]+) to give [Cp2Zr{N(SiMe2DMAP)(SiMe2OCHMe2)}H]+ ([22]+), whereas X group migration is observed upon addition of DMAP to [Cp2ZrN(SiHMe2)(SiMe2X)]+ (X = OTf ([12]+), Cl ([14]+)) to give [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}X]+ (X = OTf ([26]+), Cl ([20]+)). The species involved in these transformations are described by resonance structures that suggest β-elimination. Notably, such pathways are previously unknown in early metal amide chemistry. Finally, these migrations facilitate direct Si–H addition to carbonyls, which is proposed to occur through a pathway that previously had been reserved for later transition metal compounds
- …