1,322 research outputs found

    Simulation of the White Dwarf -- White Dwarf galactic background in the LISA data

    Get PDF
    LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low-part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. Since the galactic white-dwarfs background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of one year, we summarize the theory of cyclostationary random processes and present the corresponding generalized spectral method needed to characterize such process. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarfs binary systems present in our Galaxy.Comment: 14 pages and 6 figures. Submitted to Classical and Quantum Gravity (Proceedings of GWDAW9

    Pluripolarity of Graphs of Denjoy Quasianalytic Functions of Several Variables

    Full text link
    In this paper we prove pluripolarity of graphs of Denjoy quasianalytic functions of several variables on the spanning se

    Perceptions and understanding of research situations as a function of consent form characteristics and experimenter instructions

    Get PDF
    Two studies examined how research methodology affected participant behaviors. Study 1 tested (a) consent form perspective (1st, 2nd, or 3rd person) and (b) information on participants’ right to sue upon perceptions of coercion, ability to recall consent information, and performance on experimental tasks. Unexpectedly, participants who received instructions without the right to sue information had significantly better recall of their research rights. Study 2 manipulated (a) consent form complexity (presence or absence of jargon) and (b) the detail of verbal instructions (simple, elaborate); participants who received a consent form with simpler language spent more time on a difficult task, and participants in the elaborate instruction condition recalled more details. Together, these studies suggest (a) explaining the right to sue may actually be counterproductive; (b) providing a more detailed explanation may help participants remember procedural details; and (c) using jargon may decrease task performance

    Sex Differences in Jealousy in Response to Actual Infidelity

    Get PDF
    The present studies address two criticisms of the theory of evolved sex differences in jealousy: (a) that the sex difference in jealousy emerges only in response to hypothetical infidelity scenarios, and (b) that the sex difference emerges only using forced-choice measures. In two separate studies, one a paper-and-pencil survey with a student sample and the other a web-based survey targeting a non-student sample, men and women showed significant sex differences in jealousy in response to actual infidelity experiences; men experienced more jealousy in response to the sexual aspects of an actual infidelity, whereas women experienced more jealousy in response to the emotional aspects of the infidelity. Sex differences emerged using both continuous measures of jealousy as well as the traditional forced-choice measure. Overall, our results demonstrate that sex differences in jealousy are not limited to responses to hypothetical infidelity scenarios; they also emerge in response to actual infidelity experiences

    Universality of striped morphologies

    Get PDF
    We present a method for predicting the low-temperature behavior of spherical and Ising spin models with isotropic potentials. For the spherical model the characteristic length scales of the ground states are exactly determined but the morphology is shown to be degenerate with checkerboard patterns, stripes and more complex morphologies having identical energy. For the Ising models we show that the discretization breaks the degeneracy causing striped morphologies to be energetically favored and therefore they arise universally as ground states to potentials whose Hankel transforms have nontrivial minima.Comment: 4 pages, 4 figure

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars

    Continuous Interaction with a Virtual Human

    Get PDF
    Attentive Speaking and Active Listening require that a Virtual Human be capable of simultaneous perception/interpretation and production of communicative behavior. A Virtual Human should be able to signal its attitude and attention while it is listening to its interaction partner, and be able to attend to its interaction partner while it is speaking – and modify its communicative behavior on-the-fly based on what it perceives from its partner. This report presents the results of a four week summer project that was part of eNTERFACE’10. The project resulted in progress on several aspects of continuous interaction such as scheduling and interrupting multimodal behavior, automatic classification of listener responses, generation of response eliciting behavior, and models for appropriate reactions to listener responses. A pilot user study was conducted with ten participants. In addition, the project yielded a number of deliverables that are released for public access

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia

    Get PDF
    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia
    corecore