118 research outputs found

    Preprandial ghrelin is not affected by macronutrient intake, energy intake or energy expenditure

    Get PDF
    BACKGROUND: Ghrelin, a peptide secreted by endocrine cells in the gastrointestinal tract, is a hormone purported to have a significant effect on food intake and energy balance in humans. The influence of factors related to energy balance on ghrelin, such as daily energy expenditure, energy intake, and macronutrient intake, have not been reported. Secondly, the effect of ghrelin on food intake has not been quantified under free-living conditions over a prolonged period of time. To investigate these effects, 12 men were provided with an ad libitum cafeteria-style diet for 16 weeks. The macronutrient composition of the diets were covertly modified with drinks containing 2.1 MJ of predominantly carbohydrate (Hi-CHO), protein (Hi-PRO), or fat (Hi-FAT). Total energy expenditure was measured for seven days on two separate occasions (doubly labeled water and physical activity logs). RESULTS: Preprandial ghrelin concentrations were not affected by macronutrient intake, energy expenditure or energy intake (all P > 0.05). In turn, daily energy intake was significantly influenced by energy expenditure, but not ghrelin. CONCLUSION: Preprandial ghrelin does not appear to be influenced by macronutrient composition, energy intake, or energy expenditure. Similarly, ghrelin does not appear to affect acute or chronic energy intake under free-living conditions

    The biochemical basis of disease

    Get PDF
    Understanding Biochemistry is an essential online resource for post-16 students, teachers and undergraduates, providing up-to-date overviews of key concepts in biochemistry and molecular biosciences. The Understanding Biochemistry issues of Essays in Biochemistry are Open Access publications, meaning that these issues are freely available online to readers This article gives the reader an insight into the role of biochemistry in some of the current global health and disease problems. It surveys the biochemical causes of disease in an accessible and succinct form while also bringing in aspects of pharmacology, cell biology, pathology and physiology which are closely aligned with biochemistry. The discussion of the selected diseases highlights exciting new developments and illuminates key biochemical pathways and commonalities. The article includes coverage of diabetes, atherosclerosis, cancer, microorganisms and disease, nutrition, liver disease and Alzheimerā€™s disease, but does not attempt to be comprehensive in its coverage of disease, since this is beyond its remit and scope. Consequently there are many fascinating biochemical aspects of diseases, both common and rare, that are not addressed here that can be explored in the further reading cited. Techniques and biochemical procedures for studying disease are not covered in detail here, but these can be found readily in a range of biochemical methods sources

    A Nutrition and Conditioning Intervention for Natural Bodybuilding Contest Preparation: Case Study.

    Get PDF
    Bodybuilding competitions are becoming increasingly popular. Competitors are judged on their aesthetic appearance and usually exhibit a high level of muscularity and symmetry and low levels of body fat. Commonly used techniques to improve physique during the preparation phase before competitions include dehydration, periods of prolonged fasting, severe caloric restriction, excessive cardiovascular exercise and inappropriate use of diuretics and anabolic steroids. In contrast, this case study documents a structured nutrition and conditioning intervention followed by a 21 year-old amateur bodybuilding competitor to improve body composition, resting and exercise fat oxidation, and muscular strength that does not involve use of any of the above mentioned methods. Over a 14-week period, the Athlete was provided with a scientifically designed nutrition and conditioning plan that encouraged him to (i) consume a variety of foods; (ii) not neglect any macronutrient groups; (iii) exercise regularly but not excessively and; (iv) incorporate rest days into his conditioning regime. This strategy resulted in a body mass loss of 11.7 kgā€™s, corresponding to a 6.7 kg reduction in fat mass and a 5.0 kg reduction in fat-free mass. Resting metabolic rate decreased from 1993 kcal/d to 1814 kcal/d, whereas resting fat oxidation increased from 0.04 g/min to 0.06 g/min. His capacity to oxidize fat during exercise increased more than two-fold from 0.24 g/min to 0.59 g/min, while there was a near 3-fold increase in the corresponding exercise intensity that elicited the maximal rate of fat oxidation; 21% VĢ‡ O2max to 60% VĢ‡ O2max. Hamstring concentric peak torque decreased (1.7 to 1.5 Nm/kg), whereas hamstring eccentric (2.0 Nm/kg to 2.9 Nm/kg), quadriceps concentric (3.4 Nm/kg to 3.7 Nm/kg) and quadriceps eccentric (4.9 Nm/kg to 5.7 Nm/kg) peak torque all increased. Psychological mood-state (BRUMS scale) was not negatively influenced by the intervention and all values relating to the Athleteā€™s mood-state remained below average over the course of study. This intervention shows that a structured and scientifically supported nutrition strategy can be implemented to improve parameters relevant to bodybuilding competition and importantly the health of competitors, therefore questioning the conventional practices of bodybuilding preparation
    • ā€¦
    corecore