25 research outputs found

    History of Innate Immunity in Neurodegenerative Disorders

    Get PDF
    The foundations of innate immunity in neurodegenerative disorders were first laid by Del Rio Hortega (1919). He identified and named microglia, recognizing them as cells of mesodermal origin. Van Furth in 1969 elaborated the monocyte phagocytic system with microglia as the brain representatives. Validation of these concepts did not occur until 1987 when HLA-DR was identified on activated microglia in a spectrum of neurological disorders. HLA-DR had already been established as a definitive marker of immunocompetent cells of mesodermal origin. It was soon determined that the observed inflammatory reaction was an innate immune response. A rapid expansion of the field took place as other markers of an innate immune response were found that were made by neurons, astrocytes, oligodendroglia, and endothelial cells. The molecules included complement proteins and their regulators, inflammatory cytokines, chemokines, acute phase reactants, prostaglandins, proteases, protease inhibitors, coagulation factors, fibrinolytic factors, anaphylatoxins, integrins, free radical generators, and other unidentified neurotoxins. The Nimmerjahn movies demonstrated that resting microglia were constantly active, sampling the surround, and responding rapidly to brain damage. Ways of reducing the neurotoxic innate immune response and stimulating a healing response continue to be sought as a means for ameliorating the pathology in a spectrum of chronic degenerative disorders

    Sodium thiosulfate attenuates glial-mediated neuroinflammation in degenerative neurological diseases

    No full text
    Background: Sodium thiosulfate (STS) is an industrial chemical which has also been approved for the treatment of certain rare medical conditions. These include cyanide poisoning and calciphylaxis in hemodialysis patients with end-stage kidney disease. Here, we investigated the anti-inflammatory activity of STS in our glial-mediated neuroinflammatory model. Methods: Firstly, we measured glutathione (GSH) and hydrogen sulfide (H2S, SHāˆ’) levels in glial cells after treatment with sodium hydrosulfide (NaSH) or STS. We also measured released levels of tumor necrosis factor-Ī± (TNFĪ±) and interleukin-6 (IL-6) from them. We used two cell viability assays, MTT and lactate dehydrogenase (LDH) release assays, to investigate glial-mediated neurotoxicity and anti-inflammatory effects of NaSH or STS. We also employed Western blot to examine activation of intracellular inflammatory pathways. Results: We found that STS increases H2S and GSH expression in human microglia and astrocytes. When human microglia and astrocytes are activated by lipopolysaccharide (LPS)/interferon-Ī³ (IFNĪ³) or IFNĪ³, they release materials that are toxic to differentiated SH-SY5Y cells. When the glial cells were treated with NaSH or STS, there was a significant enhancement of neuroprotection. The effect was concentration-dependent and incubation time-dependent. Such treatment reduced the release of TNFĪ± and IL-6 and also attenuated activation of P38 MAPK and NFĪŗB proteins. The compounds tested were not harmful when applied directly to all the cell types. Conclusions: Although NaSH was somewhat more powerful than STS in these in vitro assays, STS has already been approved as an orally available treatment. STS may therefore be a candidate for treating neurodegenerative disorders that have a prominent neuroinflammatory component.Other UBCReviewedFacult

    Saliva Diagnosis as a Disease Predictor

    No full text
    Background: Saliva, the most readily available body fluid, is the product of genes which are in constant activity throughout life. Measurement of saliva can predict the onset of some diseases years before their accumulation in vulnerable tissues causes clinical signs to appear. The purpose of this study was is to demonstrate current applications of saliva analysis and to predict and prevent disease progression. Methods: We measured levels of Abeta42, C-reactive proteins (CRPs), and tumornecrosis factors (TNFs) in saliva from both healthy and fatal diseased cases such as cancer, Alzheimerā€™s disease (AD), and coronary heart disease by ELISA-mediated techniques. We also immunostained human tissue sections with antibodies specific to these proteins to demonstrate the data are comparable. Results: We found all the proteins expressed constantly in saliva from healthy controls but increased in diseased cases. This was accompanied by data from immunohistochemistry. It was also found that these proteins wereexpressed in high amounts in some healthy controls, which reflects high risk for the onset of diseases such as AD and heart diseases.Conclusions: It is concluded that measuring changes in essential gene products in saliva can predict onset of fatal diseases and open the door to effective protection measures, thus preventing premature death.Other UBCNon UBCReviewedFacult

    Aurin tricarboxylic acid protects against red blood cell hemolysis in patients with paroxysmal nocturnal hemoglobinemia.

    Get PDF
    OBJECTIVES: Paroxysmal nocturnal hemoglobinemia (PNH) is a rare but serious condition characterized by complement-mediated red blood cell (RBC) hemolysis and episodic thrombotic attack. It results from decay accelerating factor (CD55), and protectin (CD59), becoming attached to RBC and other cell surfaces. Absence of these protective proteins leaves such cells vulnerable to self attack at the C3 convertase and membrane attack complex (MAC) stages of complement activation. We have previously reported that aurin tricarboxylic acid (ATA) is an orally effective agent that selectively blocks complement activation at the C3 convertase stage as well as MAC formation at the C9 insertion stage. DESIGN AND METHODS: We used a CH50 assay method and western blot analysis to investigate the vulnerability to complement attack of PNH RBCs compared with normal RBCs. Zymosan was used as the activator of normal serum and PNH serum. ATA was added to the sera to determine the concentration necessary to protect the RBCs from lysis by the zymosan-activated sera. RESULTS: We found that erythrocytes from PNH patients on long term treatment with eculizumab were twice as vulnerable as normal erythrocytes to lysis induced by complement activated serum. Western blot data showed the presence of both C3 and C5 convertases on the PNH patient erythrocyte membranes. These data indicate persistent vulnerability of PNH erythrocytes to complement attack due to deficiencies in CD55 and CD59. ATA, when added to serum in vitro, protected PNH erythrocytes from complement attack, restoring their resistance to that of normal erythrocytes. CONCLUSIONS: We conclude that ATA, by protecting PNH erythrocytes from their decay accelerating factor (CD55) and protectin (CD59) deficiencies, may be an effective oral treatment in this disorder
    corecore