19 research outputs found

    Pre-irradiation dental care: Ready-to-use templates for oropharyngeal cancers

    Get PDF
    AimTo develop a tool in order to guide pre-irradiation dental care (PIDC) for patients with oropharyngeal cancers.BackgroundOsteoradionecrosis of the jaws is a potential complication of radiotherapy (RT) for head and neck cancers. To prevent this complication, PIDC can involve multiple dental extractions as a preventative measure to avoid post-RT complications. However, there is no standardized tool to guide PIDC.Materials and methodsFrom January 2005 to October 2015, 120 head and neck cancer patients were prospectively included in a study investigating dysgeusia after RT. From this cohort, patients were enrolled according to the following inclusion criteria: histopathological confirmation of oropharyngeal squamous cell carcinoma; stage T1-4 N1-3 M0; ≤10 missing teeth. Individual teeth were retrospectively delineated on planning computed tomography and doses to dentition were assessed to generate templates.ResultsThirty-three patients were included. Molars received highest doses with a mean dose of 50 Gy (range; 19–75 Gy). Ipsi-lateral and contralateral wisdom teeth received RT dose superior to 50 Gy in 92% and 56% of cases, respectively. Patients with advanced disease (T4 or N2c-3) received higher mean doses on inferior and ipsi-lateral dental arches compared to other patients (T1-3 N0-2b): 42 Gy vs. 39 Gy and 44 Gy vs. 39 Gy (p

    Magnetic Resonance-Guided Radiation Therapy for Head and Neck Cancers

    No full text
    Despite the significant evolution of radiation therapy (RT) techniques in recent years, many patients with head and neck cancer still experience significant toxicities during and after treatments. The increased soft tissue contrast and functional sequences of magnetic resonance imaging (MRI) are particularly attractive in head and neck cancer and have led to the increasing development of magnetic resonance-guided RT (MRgRT). This approach refers to the inclusion of the additional information acquired from a diagnostic or planning MRI in radiation treatment planning, and now extends to online high-quality daily imaging generated by the recently developed MR-Linac. MRgRT holds numerous potentials, including enhanced baseline and planning evaluations, anatomical and functional treatment adaptation, potential for hypofractionation, and multiparametric assessment of response. This article offers a structured review of the current literature on these established and upcoming roles of MRI for patients with head and neck cancer undergoing RT

    Single Nucleotide Polymorphism rs6942067 Is a Risk Factor in Young and in Non-Smoking Patients with HPV Negative Head and Neck Squamous Cell Carcinoma

    No full text
    Genetic factors behind the increasing incidence of human papillomavirus (HPV) negative head and neck squamous cell carcinoma (HNSCC) in young non-smokers are suspected, but have not been identified. Recently, rs6942067, a single nucleotide polymorphism (SNP) located upstream of the DCBLD1 gene, was found associated with non-smoking lung adenocarcinoma. To validate if this SNP is also implicated in HNSCC, participants of The Cancer Genome Atlas HNSCC cohort were investigated for rs6942067 status, associated DCBLD1 expression, and clinical characteristics. Occurrence of the rs6942067 GG genotype is significantly higher in young and in HPV negative non-smoking HNSCC than in other HNSCC. Additionally, rs6942067 GG is associated with higher DCBLD1 expression in HNSCC and patients with high DCBLD1 expression have a worse overall survival at three years, both in univariate and multivariate analysis. Furthermore, high DCBLD1 expression is associated with activation of the integrin signaling pathway and its phosphorylation with EGFR and MET. Collectively, these findings suggest that DCBLD1 plays a critical role in HNSCC and demonstrate an association between rs6942067 and clinical characteristics of young age and HPV negative non-smoking status in HNSCC patients

    Phase I/II trial of Durvalumab plus Tremelimumab and stereotactic body radiotherapy for metastatic head and neck carcinoma

    No full text
    Abstract Background The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway has previously been demonstrated in metastatic head and neck squamous cell carcinoma (HNSCC). Stereotactic Body Radiotherapy (SBRT) aims at ablating metastatic lesions and may play a synergistic role with immunotherapy. The purpose of this study is to assess the safety and efficacy of triple treatment combination (TTC) consisting of the administration of durvalumab and tremelimumab in combination with SBRT in metastatic HNSCC. Method This is a phase I/II single arm study that will include 35 patients with 2–10 extracranial metastatic lesions. Patients will receive durvalumab (1500 mg IV every 4 weeks (Q4W)) and tremelimumab (75 mg IV Q4W for a total of 4 doses) until progression, unacceptable toxicity or patient withdrawal. SBRT to 2–5 metastases will be administered between cycles 2 and 3 of immunotherapy. The safety of the treatment combination will be evaluated through assessment of TTC-related toxicities, defined as grade 3–5 toxicities based on Common Terminology Criteria for Adverse Events (v 4.03), occurring within 6 weeks from SBRT start, and that are definitely, probably or possibly related to the combination of all treatments. We hypothesize that dual targeting of PD-L1 and CTLA-4 pathways combined with SBRT will lead to < 35% grade 3–5 acute toxicities related to TTC. Progression free survival (PFS) will be the primary endpoint of the phase II portion of this study and will be assessed with radiological exams every 8 weeks using the RECIST version 1.1 criteria. Discussion The combination of synergistic dual checkpoints inhibition along with ablative radiation may significantly potentiate the local and systemic disease control. This study constitutes the first clinical trial combining effects of SBRT with dual checkpoint blockade with durvalumab and tremelimumab in the treatment of metastatic HNSCC. If positive, this study would lead to a phase III trial testing this treatment combination against standard of care in metastatic HNSCC. Trial registration NCT03283605. Registration date: September 14, 2017; version 1

    Phase I/II trial of Durvalumab plus Tremelimumab and stereotactic body radiotherapy for metastatic head and neck carcinoma

    No full text
    Abstract Background The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway has previously been demonstrated in metastatic head and neck squamous cell carcinoma (HNSCC). Stereotactic Body Radiotherapy (SBRT) aims at ablating metastatic lesions and may play a synergistic role with immunotherapy. The purpose of this study is to assess the safety and efficacy of triple treatment combination (TTC) consisting of the administration of durvalumab and tremelimumab in combination with SBRT in metastatic HNSCC. Method This is a phase I/II single arm study that will include 35 patients with 2–10 extracranial metastatic lesions. Patients will receive durvalumab (1500 mg IV every 4 weeks (Q4W)) and tremelimumab (75 mg IV Q4W for a total of 4 doses) until progression, unacceptable toxicity or patient withdrawal. SBRT to 2–5 metastases will be administered between cycles 2 and 3 of immunotherapy. The safety of the treatment combination will be evaluated through assessment of TTC-related toxicities, defined as grade 3–5 toxicities based on Common Terminology Criteria for Adverse Events (v 4.03), occurring within 6 weeks from SBRT start, and that are definitely, probably or possibly related to the combination of all treatments. We hypothesize that dual targeting of PD-L1 and CTLA-4 pathways combined with SBRT will lead to < 35% grade 3–5 acute toxicities related to TTC. Progression free survival (PFS) will be the primary endpoint of the phase II portion of this study and will be assessed with radiological exams every 8 weeks using the RECIST version 1.1 criteria. Discussion The combination of synergistic dual checkpoints inhibition along with ablative radiation may significantly potentiate the local and systemic disease control. This study constitutes the first clinical trial combining effects of SBRT with dual checkpoint blockade with durvalumab and tremelimumab in the treatment of metastatic HNSCC. If positive, this study would lead to a phase III trial testing this treatment combination against standard of care in metastatic HNSCC. Trial registration NCT03283605. Registration date: September 14, 2017; version 1
    corecore