3 research outputs found

    DNA Oligonucleotides as Antivirals and Vaccine Constituents against SARS Coronaviruses: A Prospective Tool for Immune System Tuning

    No full text
    The SARS-CoV-2 pandemic has demonstrated the need to create highly effective antivirals and vaccines against various RNA viruses, including SARS coronaviruses. This paper provides a short review of innovative strategies in the development of antivirals and vaccines against SARS coronaviruses, with a focus on antisense antivirals, oligonucleotide adjuvants in vaccines, and oligonucleotide vaccines. Well-developed viral genomic databases create new opportunities for the development of innovative vaccines and antivirals using a post-genomic platform. The most effective vaccines against SARS coronaviruses are those able to form highly effective memory cells for both humoral and cellular immunity. The most effective antivirals need to efficiently stop viral replication without side effects. Oligonucleotide antivirals and vaccines can resist the rapidly changing genomic sequences of SARS coronaviruses using conserved regions of their genomes to generate a long-term immune response. Oligonucleotides have been used as excellent adjuvants for decades, and increasing data show that oligonucleotides could serve as antisense antivirals and antigens in vaccine formulations, becoming a prospective tool for immune system tuning

    New Advances and Perspectives of Influenza Prevention: Current State of the Art

    No full text
    The modern world, swaddled in the benefits of civilization, has fostered the development of science and the introduction of products of technological progress. This has allowed serious individual health problems, including those associated with viral diseases, to become targets for prophylaxis, treatment, and even cure. Human immunodeficiency viruses, hepatitis viruses, coronaviruses, and influenza viruses are among the most disturbing infectious agents in the human experience. Influenza appears to be one of the oldest viruses known to man; these viruses were among the first to cause major epidemics and pandemics in human history, collectively causing up to 0.5 million deaths worldwide each year. The main problem in the fight against influenza viruses is that they mutate constantly, which leads to molecular changes in antigens, including outer membrane glycoproteins, which play a critical role in the creation of modern vaccines. Due to the constant microevolution of the virus, influenza vaccine formulas have to be reviewed and improved every year. Today, flu vaccines represent an eternal molecular race between a person and a virus, which neither entity seems likely to win

    Oligonucleotide Insecticides for Green Agriculture: Regulatory Role of Contact DNA in Plant–Insect Interactions

    No full text
    Insects vastly outnumber us in terms of species and total biomass, and are among the most efficient and voracious consumers of plants on the planet. As a result, to preserve crops, one of the primary tasks in agriculture has always been the need to control and reduce the number of insect pests. The current use of chemical insecticides leads to the accumulation of xenobiotics in ecosystems and a decreased number of species in those ecosystems, including insects. Sustainable development of human society is impossible without useful insects, so the control of insect pests must be effective and selective at the same time. In this article, we show for the first time a natural way to regulate the number of insect pests based on the use of extracellular double-stranded DNA secreted by the plant Pittosporum tobira. Using a principle similar to one found in nature, we show that the topical application of artificially synthesized short antisense oligonucleotide insecticides (olinscides, DNA insecticides) is an effective and selective way to control the insect Coccus hesperidum. Using contact oligonucleotide insecticide Coccus-11 at a concentration of 100 ng/μL on C. hesperidum larvae resulted in a mortality of 95.59 ± 1.63% within 12 days. Green oligonucleotide insecticides, created by nature and later discovered by humans, demonstrate a new method to control insect pests that is beneficial and safe for macromolecular insect pest management
    corecore