2 research outputs found
Cervical electrical neuromodulation effectively enhances hand motor output in healthy subjects by engaging a use-dependent intervention
Electrical enabling motor control (eEmc) through transcutaneous spinal cord stimulation is a non-invasive method that can modify the functional state of the sensory-motor system. We hypothesize that eEmc delivery, together with hand training, improves hand function in healthy subjects more than either intervention alone by inducing plastic changes at spinal and cortical levels. Ten voluntary participants were included in the following three interventions: (i) hand grip training, (ii) eEmc, and (iii) eEmc with hand training. Functional evaluation included the box and blocks test (BBT) and hand grip maximum voluntary contraction (MVC), spinal and cortical motor evoked potential (sMEP and cMEP), and resting motor thresholds (RMT), short interval intracortical inhibition (SICI), and F wave in the abductor pollicis brevis muscle. eEmc combined with hand training retained MVC and increased F wave amplitude and persistency, reduced cortical RMT and facilitated cMEP amplitude. In contrast, eEmc alone only increased F wave amplitude, whereas hand training alone reduced MVC and increased cortical RMT and SICI. In conclusion, eEmc combined with hand grip training enhanced hand motor output and induced plastic changes at spinal and cortical level in healthy subjects when compared to either intervention alone. These data suggest that electrical neuromodulation changes spinal and, perhaps, supraspinal networks to a more malleable state, while a concomitant use-dependent mechanism drives these networks to a higher functional state
Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study
Electrical enabling motor control (eEmc) through transcutaneous spinal cord stimulation offers promise in improving hand function. However, it is still unknown which stimulus intensity or which muscle force level could be better for this improvement. Nine healthy individuals received the following interventions: (i) eEmc intensities at 80%, 90% and 110% of abductor pollicis brevis motor threshold combined with hand training consisting in 100% handgrip strength; (ii) hand training consisting in 100% and 50% of maximal handgrip strength combined with 90% eEmc intensity. The evaluations included box and blocks test (BBT), maximal voluntary contraction (MVC), F wave persistency, F/M ratio, spinal and cortical motor evoked potentials (MEP), recruitment curves of spinal MEP and cortical MEP and short-interval intracortical inhibition. The results showed that: (i) 90% eEmc intensity increased BBT, MVC, F wave persistency, F/M ratio and cortical MEP recruitment curve; 110% eEmc intensity increased BBT, F wave persistency and cortical MEP and recruitment curve of cortical MEP; (ii) 100% handgrip strength training significantly modulated MVC, F wave persistency, F/M wave and cortical MEP recruitment curve in comparison to 50% handgrip strength. In conclusion, eEmc intensity and muscle strength during training both influence the results for neuromodulation at the cervical level