26 research outputs found

    MRI-based inverse finite element approach for the mechanical assessment of patellar articular cartilage from static compression test

    Get PDF
    The mechanical property of articular cartilage determines to a great extent the functionality of diarthrodial joints. Consequently, the early detection of mechanical and, thus, functional changes of cartilage is crucial for preventive measures to maintain the mobility and the quality of life of individuals. An alternative to conventional mechanical testing is the inverse finite element approach, enabling non-destructive testing of the tissue. We evaluated a method for the assessment of the equilibrium material properties of the patellar cartilage based on magnetic resonance imaging during patellofemoral compression. We performed ex vivo testing of two equine patellas with healthy cartilage, one with superficial defects, and one with synthetically degenerated cartilage to simulate a pre-osteoarthritic stage. Static compression with 400N for 2h resulted in morphological changes comparable to physiological in vivo deformations in humans. We observed a decrease of the equilibrium Young's modulus of the degenerated cartilage by -59%, which was in the range of the results from indentation (-74%) and confined compression tests (-58%). With the reported accuracy of magnetic resonance imaging and its reproducibility, the results indicate the potential to measure differences in Young's modulus with regard to cartilage degeneration and consequently to distinguish between healthy and pre-osteoarthritic cartilag

    Refixation stability in shoulder hemiarthroplasty in case of four-part proximal humeral fracture

    Get PDF
    Primary stability of refixated fractures in case of shoulder hemiarthroplasty is a prerequisite to restore physiological glenohumeral joint function. Clinical observations often show a secondary dislocation and subsequent resorption of the bony anchor points like the greater and lesser tuberosity at the rotator cuff tendons. This failed integration leads to impaired glenohumeral load transmission and subsequent reduction of mobility. As a consequence, the optimisation of refixation methods is crucial for a better clinical outcome. To prove the stability of refixation techniques, a Finite Element fracture model was built. Resulting stresses at the bone surface and fragment migration relative to the prosthesis shaft were studied. The results of the calculations show that the isolated tuberosities show unstressed bone regions compared to the intact model. This circumstance may explain the clinically detected bone resorption due to the absence of mechanical stimuli. Furthermore, a cable guidance through lateral holes in the middle part of the proximal prosthesis results in a lower fragment displacement than a circumferential fixation method surrounding the entire proximal bon

    Review of fixation techniques for the four-part fractured proximal humerus in hemiarthroplasty

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The clinical outcome of hemiarthroplasty for proximal humeral fractures is not satisfactory. Secondary fragment dislocation may prevent bone integration; the primary stability by a fixation technique is therefore needed to accomplish tuberosity healing. Present technical comparison of surgical fixation techniques reveals the state-of-the-art approach and highlights promising techniques for enhanced stability.</p> <p>Method</p> <p>A classification of available fixation techniques for three- and four part fractures was done. The placement of sutures and cables was described on the basis of anatomical landmarks such as the rotator cuff tendon insertions, the bicipital groove and the surgical neck. Groups with similar properties were categorized.</p> <p>Results</p> <p>Materials used for fragment fixation include heavy braided sutures and/or metallic cables, which are passed through drilling holes in the bone fragments. The classification resulted in four distinct groups: A: both tuberosities and shaft are fixed together by one suture, B: single tuberosities are independently connected to the shaft and among each other, C: metallic cables are used in addition to the sutures and D: the fragments are connected by short stitches, close to the fragment borderlines.</p> <p>Conclusions</p> <p>A plurality of techniques for the reconstruction of a fractured proximal humerus is found. The categorisation into similar strategies provides a broad overview of present techniques and supports a further development of optimized techniques. Prospective studies are necessary to correlate the technique with the clinical outcome.</p

    Gait analysis in patients with idiopathic scoliosis

    Get PDF
    Introduction: The goal of this study was to observe scoliotic subjects during level walking to identify asymmetries—which may be related to a neurological dysfunction or the spinal deformity itself—and to correlate these to the severity of the scoliotic curve. Methods: We assessed the gait pattern of ten females (median age 14.4) with idiopathic scoliosis characterised by a left-lumbar and a right-thoracic curve component. Gait analysis consisted of 3D kinematic (VICON) and kinetic (Kistler force plates) measurements. The 3D-segment positions of the head, trunk and pelvis, as well as the individual joint angles of the upper and lower extremities, were computed during walking and static standing. Calculation of pertinent kinetic and kinematic parameters allowed statistical comparison. Results: All subjects walked at a normal velocity (median: 1.22m/s; range:1.08-1.30m/s; height-adjusted velocity: 0.75m/s; range: 0.62-0.88m/s). The timing of the individual gait phases was normal and symmetrical for the whole group. Sagittal plane hip, knee and ankle motion followed a physiological pattern. Significant asymmetry was observed in the trunk's rotational behaviour in the transverse plane. During gait, the pelvis and the head rotated symmetrically to the line of progression, whereas trunk rotation was asymmetric, with increased relative forward rotation of the right upper body in relation to the pelvis. This produced a torsional offset to the line of progression. Minimal torsion (at right heel strike) measured: median 1.0° (range: 5.1°-8.3°), and maximal torsion (at left heel strike) measured 11.4° (range 6.9°-17.9°). The magnitude of the torsional offset during gait correlated to the severity of the thoracic deformity and to the standing posture, whereas the range of the rotational movement was not affected by the severity of the deformity. The ground reaction forces revealed a significant asymmetry of [Msz], the free rotational moment around the vertical axis going through the point of equivalent force application. On the right side, the initial endo-rotational moment was lower, followed by a higher exo-rotational moment than on the left. All the other force parameters (vertical, medio-lateral, anterior-posterior), did not show a significant side difference for the whole group. The use of a brace stiffened torsional motion. However the torsional offset and the asymmetry of the free rotational moment remained unchanged. Conclusion: The most significant and marked asymmetry was seen in the transverse plane, denoted as a torsional offset of the upper trunk in relation to the symmetrically rotating pelvis. This motion pattern was reflected by a ground-reaction-force asymmetry of the free rotational moment. Further studies are needed to investigate whether this behaviour is solely an expression of the structural deformity or whether it could enhance the progression of the torsional deformit

    Corrigendum to “Prediction of Local Ultimate Strain and Toughness of Trabecular Bone Tissue by Raman Material Composition Analysis”

    Get PDF
    Clinical studies indicate that bone mineral density correlates with fracture risk at the population level but does not correlate with individual fracture risk well. Current research aims to better understand the failure mechanism of bone and to identify key determinants of bone quality, thus improving fracture risk prediction. To get a better understanding of bone strength, it is important to analyze tissue-level properties not influenced by macro- or microarchitectural factors. The aim of this pilot study was to identify whether and to what extent material properties are correlated with mechanical properties at the tissue level. The influence of macro- or microarchitectural factors was excluded by testing individual trabeculae. Previously reported data of mechanical parameters measured in single trabeculae under tension and bending and its compositional properties measured by Raman spectroscopy was evaluated. Linear and multivariate regressions show that bone matrix quality but not quantity was significantly and independently correlated with the tissue-level ultimate strain and postyield work (r=0.65–0.94). Principal component analysis extracted three independent components explaining 86% of the total variance, representing elastic, yield, and ultimate components according to the included mechanical parameters. Some matrix parameters were both included in the ultimate component, indicating that the variation in ultimate strain and postyield work could be largely explained by Raman-derived compositional parameters

    Biomechanical testing of a polymer-based biomaterial for the restoration of spinal stability after nucleotomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surgery for disc herniations can be complicated by two major problems: painful degeneration of the spinal segment and re-herniation. Therefore, we examined an absorbable poly-glycolic acid (PGA) biomaterial, which was lyophilized with hyaluronic acid (HA), for its utility to (a) re-establish spinal stability and to (b) seal annulus fibrosus defects. The biomechanical properties range of motion (ROM), neutral zone (NZ) and a potential annulus sealing capacity were investigated.</p> <p>Methods</p> <p>Seven bovine, lumbar spinal units were tested in vitro for ROM and NZ in three consecutive stages: (a) intact, (b) following nucleotomy and (c) after insertion of a PGA/HA nucleus-implant. For biomechanical testing, spinal units were mounted on a loading-simulator for spines. In three cycles, axial loading was applied in an excentric mode with 0.5 Nm steps until an applied moment of ± 7.5 Nm was achieved in flexion/extension. ROM and NZ were assessed. These tests were performed without and with annulus sealing by sewing a PGA/HA annulus-implant into the annulus defect.</p> <p>Results</p> <p>Spinal stability was significantly impaired after nucleotomy (p < 0.001). Intradiscal implantation of a PGA-HA nucleus-implant, however, restored spinal stability (p < 0.003). There was no statistical difference between the stability provided by the nucleus-implant and the intact stage regarding flexion/extension movements (p = 0.209). During the testing sequences, herniation of biomaterial through the annulus defect into the spinal canal regularly occurred, resulting in compression of neural elements. Sewing a PGA/HA annulus-implant into the annulus defect, however, effectively prevented herniation.</p> <p>Conclusion</p> <p>PGA/HA biomaterial seems to be well suited for cell-free and cell-based regenerative treatment strategies in spinal surgery. Its abilities to restore spinal stability and potentially close annulus defects open up new vistas for regenerative approaches to treat intervertebral disc degeneration and for preventing implant herniation.</p

    Movement Coupling at the Ankle During the Stance Phase of Running

    Get PDF
    The purpose of this study was to quantify movement coupling at the ankle during the stance phase of running using bone-mounted markers. Intracortical bone pins with reflective marker triads were inserted under standard local anaesthesia into the calcaneus and the tibia of five healthy male subjects. The three-dimensional rotations were determined using a joint coordinate system approach. Movement coupling was observed in all test subjects and occurred in phases with considerable individual differences. Between the shoe and the calcaneus coupling increased after midstance which suggested that the test shoes provided more coupling for inversion than for eversion. Movement coupling between calcaneus and tibia was higher in the first phase (from heel strike to midstance) compared with the second phase (from midstance to take-off). This finding is in contrast to previous in-vitro studies but may be explained by the higher vertical loads of the present in-vivo study. Thus, movement coupling measured at the bone level changed throughout the stance phase of running and was found to be far more complex than a simple mitered joint or universal joint model
    corecore