536 research outputs found
An experimental and computational investigation of structure and magnetism in pyrite CoFeS: Chemical bonding and half-metallicity
Bulk samples of the pyrite chalcogenide solid solutions CoFeS
0 <= x <= 0.5, have been prepared and their crystal structures and magnetic
properties studied by X-ray diffraction and SQUID magnetization measurements.
Across the solution series, the distance between sulfur atoms in the persulfide
(S) unit remains nearly constant. First principles electronic
structure calculations using experimental crystal structures as inputs point to
the importance of this constant S-S distance, in helping antibonding S-S levels
pin the Fermi energy. In contrast hypothetical rock-salt CoS is not a good half
metal, despite being nearly isostructural and isoelectronic. We use our
understanding of the CoFeS system to make some prescriptions
for new ferromagnetic half-metals.Comment: 8 pages including 9 figure
Towards a microscopic theory of toroidal moments in bulk periodic crystals
We present a theoretical analysis of magnetic toroidal moments in periodic
systems, in the limit in which the toroidal moments are caused by a time and
space reversal symmetry breaking arrangement of localized magnetic dipole
moments. We summarize the basic definitions for finite systems and address the
question of how to generalize these definitions to the bulk periodic case. We
define the toroidization as the toroidal moment per unit cell volume, and we
show that periodic boundary conditions lead to a multivaluedness of the
toroidization, which suggests that only differences in toroidization are
meaningful observable quantities. Our analysis bears strong analogy to the
modern theory of electric polarization in bulk periodic systems, but we also
point out some important differences between the two cases. We then discuss the
instructive example of a one-dimensional chain of magnetic moments, and we show
how to properly calculate changes of the toroidization for this system.
Finally, we evaluate and discuss the toroidization (in the local dipole limit)
of four important example materials: BaNiF_4, LiCoPO_4, GaFeO_3, and BiFeO_3.Comment: replaced with final (published) version, which includes some changes
in the text to improve the clarity of presentatio
First-principles study of spontaneous polarization in multiferroic BiFeO
The ground-state structural and electronic properties of ferroelectric
BiFeO are calculated using density functional theory within the local
spin-density approximation and the LSDA+U method. The crystal structure is
computed to be rhombohedral with space group , and the electronic
structure is found to be insulating and antiferromagnetic, both in excellent
agreement with available experiments. A large ferroelectric polarization of
90-100 C/cm is predicted, consistent with the large atomic
displacements in the ferroelectric phase and with recent experimental reports,
but differing by an order of magnitude from early experiments. One possible
explanation is that the latter may have suffered from large leakage currents.
However both past and contemporary measurements are shown to be consistent with
the modern theory of polarization, suggesting that the range of reported
polarizations may instead correspond to distinct switching paths in structural
space. Modern measurements on well-characterized bulk samples are required to
confirm this interpretation.Comment: (9 pages, 5 figures, 5 tables
First principles study of the multiferroics BiFeO, BiFeCrO, and BiCrO: Structure, polarization, and magnetic ordering temperature
We present results of an {\it ab initio} density functional theory study of
three bismuth-based multiferroics, BiFeO, BiFeCrO, and
BiCrO. We disuss differences in the crystal and electronic structure of
the three systems, and we show that the application of the LDA+ method is
essential to obtain realistic structural parameters for BiFeCrO. We
calculate the magnetic nearest neighbor coupling constants for all three
systems and show how Anderson's theory of superexchange can be applied to
explain the signs and relative magnitudes of these coupling constants. From the
coupling constants we then obtain a mean-field approximation for the magnetic
ordering temperatures. Guided by our comparison of these three systems, we
discuss the possibilities for designing a multiferroic material with large
magnetization above room temperature.Comment: 8 Pages, 4 Figure
Age adjustment of cancer survival rates: methods, point estimates and standard errors
We empirically evaluated the performance of a new method for age adjustment of cancer survival compared to traditional age adjustment using data from the Finnish Cancer Registry. We find that both methods provide almost identical results for absolute survival but the new method generally provides more meaningful estimates of relative survival with often a smaller standard error
Surface and bulk polaritons in a linear magnetoelectric multiferroic with canted spins: Transverse Electric polarisation
Some magnetoelectric multiferroics have a canted spin structure that can be
described by a Dzyaloshinkii-Moriya coupling. We calculate properties and
features expected for surface and bulk magnon polaritons in such media with a
linear magnetoelectric interaction for the case of transverse electric
polarisation. The dielectric polarisation and magnetisation of weak
ferromagnetism are constrained to lie in the plane parallel to the surface. We
examine a geometry with the polarisation oriented in the film plane and present
numerical results for the transverse electric polarisation. Particular
attention is given to non-reciprocal surface modes, which exist in frequency
between two bulk bands, and show how these modes can be modified by external
magnetic field. Results for attenuated total reflection are presented, and
discussed in relation to nonreciprocity. Example results are calculated for the
canted antiferromagnet BaMnF4.Comment: 14 pages, 6 figure
Structural and magnetic characterization of the complete delafossite solid solution (CuAlO2){1-x}(CuCrO2){x}
We have prepared the complete delafossite solid solution series between
diamagnetic CuAlO2 and the t2g^3 frustrated antiferromagnet CuCrO2. The
evolution with composition x in CuAl(1-x)Cr(x)O2 of the crystal structure and
magnetic properties has been studied and is reported here. The room-temperature
unit cell parameters follow the Vegard law and increase with x as expected. The
effective moment is equal to the Cr^3+ spin-only S = 3/2 value throughout the
entire solid solution. Theta is negative, indicating that the dominant
interactions are antiferromagnetic, and its magnitude increases with Cr
substitution. For dilute Cr compositions, J_BB was estimated by mean-field
theory to be 2.0 meV. Despite the sizable Theta, long-range antiferromagnetic
order does not develop until very large x, and is preceeded by glassy behavior.
Data presented here, and that on dilute Al-substitution from Okuda et al.,
suggest that the reduction in magnetic frustration due to the presence of
non-magnetic Al does not have as dominant an effect on magnetism as chemical
disorder and dilution of the magnetic exchange. For all samples, the 5 K
isothermal magnetization does not saturate in fields up to 5 T and minimal
hysteresis is observed. The presence of antiferromagnetic interactions is
clearly evident in the sub-Brillouin behavior with a reduced magnetization per
Cr atom. An inspection of the scaled Curie plot reveals that significant
short-range antiferromagnetic interactions occur in CuCrO2 above its Neel
temperature, consistent with its magnetic frustration. Uncompensated
short-range interactions are present in the Al-substituted samples and are
likely a result of chemical disorder
Soft x-ray spectroscopy experiments on the near K-edge of B in MB2 (M=Mg, Al, Ta, and Nb)
Soft X-ray absorption and emission measurements are performed for the K- edge
of B in MB (M=Mg, Al, Ta and Nb). Unique feature of MgB with a high
density of B 2-state below and above the Fermi edge, which
extends to 1 eV above the edge, is confirmed. In contrast, the B 2 density
of states in AlB and TaB, both of occupied and unoccupied states,
decreased linearly towards the Fermi energy and showed a dip at the Fermi
energy. Furthermore, there is a broadening of the peaks with
-character in XES and XAS of AlB, which is due to the increase of
three dimensionality in the -band in AlB. The DOS of NbB has a
dip just below the Fermi energy. The present results indicate that the large
DOS of B-2 states near the Fermi energy are crucial for the
superconductivity of MgB.Comment: 3 pages text and 4 pages figures. accepted for publication to Phys.
Rev.
Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites
Using the newly developed VASP2WANNIER90 interface we have constructed
maximally localized Wannier functions (MLWFs) for the e_g states of the
prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of
approximation for the exchange-correlation kernel. These include conventional
density functional theory (DFT) with and without additional on-site Hubbard U
term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the
MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a
complete set of TB parameters which should serve as guidance for more elaborate
treatments of correlation effects in effective Hamiltonian-based approaches.
The method-dependent changes of the calculated TB parameters and their
interplay with the electron-electron (el-el) interaction term are discussed and
interpreted. We discuss two alternative model parameterizations: one in which
the effects of the el-el interaction are implicitly incorporated in the
otherwise "noninteracting" TB parameters, and a second where we include an
explicit mean-field el-el interaction term in the TB Hamiltonian. Both models
yield a set of tabulated TB parameters which provide the band dispersion in
excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure
- …