2,551 research outputs found

    Anomalous Spin and Charge Dynamics of the 2D t-J Model at low doping

    Full text link
    We present an exact diagonalization study of the dynamical spin and density correlation function of the 2D t-J model for hole doping < 25%. Both correlation functions show a remarkably regular, but completely different scaling behaviour with both hole concentration and parameter values: the density correlation function is consistent with that of bosons corresponding to the doped holes and condensed into the lowest state of the noninteracting band of width 8t, the spin correlation function is consistent with Fermions in a band of width J. We show that the spin bag picture gives a natural explanation for this unusual behaviour.Comment: Revtex-file, 4 PRB pages + 5 figures attached as uu-encoded ps-files Hardcopies of figures (or the entire manuscript) can also be obtained by e-mailing to: [email protected]

    Landau mapping and Fermi liquid parameters of the 2D t-J model

    Get PDF
    We study the momentum distribution function n(k) in the 2D t-J model on small clusters by exact diagonalization. We show that n(k) can be decomposed systematically into two components with Bosonic and Fermionic doping dependence. The Bosonic component originates from the incoherent motion of holes and has no significance for the low energy physics. For the Fermionic component we exlicitely perform the one-to-one Landau mapping between the low lying eigenstates of the t-J model clusters and those of an equivalent system of spin-1/2 quasiparticles. This mapping allows to extract the quasiparticle dispersion, statistics, and Landau parameters. The results show conclusively that the 2D t-J model for small doping is a Fermi liquid with a `small' Fermi surface and a moderately strong attractive interaction between the quasiparticles.Comment: Revtex file, 5 pages with 5 embedded eps-files, hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    Synthesis and Properties of Single-Walled Carbon Nanotubes Filled with Metal Halogenides and Metallocenes

    Get PDF
    This chapter reviews the current status of the research on the electronic properties of single-walled carbon nanotubes (SWCNTs) filled with metal halogenides and metallocenes and growth kinetics of inner SWCNTs inside metallocene-filled nanotubes. The chapter starts with the description of the peculiarities of the synthesis of metal halogenide-filled SWCNTs, comparison of different filling methods, their advantages, disadvantages, and restrictions. Then, we comprehensively summarize, compare, and critically discuss the recent studies on the electronic properties of metal halogenide-filled SWCNTs. After that, the synthesis methods of metallocene-filled SWCNTs are described and the results of the investigation of the growth kinetics of inner SWCNTs inside the filled nanotubes are summarized. Then, the reports dedicated to the investigation of the electronic properties of metallocene-filled SWCNTs are reviewed. Finally, potentials for future research, development, and application of filled SWCNTs are highlighted

    Entwicklung von Populationen bei Mais (Zea mays L.) Selektionseffizienz und Leistungsfähigkeit

    Get PDF
    Maize is one of the most important crops around the world. Global players in seed production offer more than hundreds of different varieties. All of them are hybrids whereas open pollinated varieties (OPVs) are rare or extinct. In Germany (and many other European countries) no new OPVs are registered; efforts to do so failed in the past. The main advantage of OPVs is their phenotypic and genetic heterogeneity and thus their ability to adapt to different environmental conditions. This could be of utmost interest facing the complex challenge of climate change. Populations based on new breeding material were developed and tested in comparison to actual hybrids and landraces. While the new populations achieved about 80 % of the hybrid yield, landraces failed with only 65 %. The efficiency of selection methods needs to be improved

    Excitation spectrum of the homogeneous spin liquid

    Full text link
    We discuss the excitation spectrum of a disordered, isotropic and translationally invariant spin state in the 2D Heisenberg antiferromagnet. The starting point is the nearest-neighbor RVB state which plays the role of the vacuum of the theory, in a similar sense as the Neel state is the vacuum for antiferromagnetic spin wave theory. We discuss the elementary excitations of this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1 excited dimers which must be modeled by bond Bosons. We derive an effective Hamiltonian describing the excited dimers which is formally analogous to spin wave theory. Condensation of the bond-Bosons at zero temperature into the state with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering. The latter is a key ingredient for a microscopic interpretation of Zhang's SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    A high power CMOS class-D amplifier for inductive-link medical transmitters

    Get PDF
    Powering of medical implants by inductive coupling is an effective technique, which avoids the use of bulky implanted batteries or transcutaneous wires. On the external unit side, class-D and class-E power amplifiers (PAs) are conventionally used thanks to their high efficiency at high frequencies. The initial specifications driving this work require the use of multiple independent stimulators, which imposes serious constraints on the area and functionality of the external unit. An integrated circuit class-D PA has been designed to provide both small area and enhanced functionality, the latter achieved by the addition of an on-chip phased-locked loop (PLL), a dead-time generator and a phase detector. The PA has been designed in a 0.18μm CMOS high-voltage process technology and occupies an area of 9.86 mm2. It works at frequencies up to 14 MHz and 30 V supply and efficiencies higher than 80% are obtained at 14 MHz. The PA is intended for a closed-loop transmitter system that optimises power delivery to medical implants

    Charged excitons in doped extended Hubbard model systems

    Full text link
    We show that the charge transfer excitons in a Hubbard model system including nearest neighbor Coulomb interactions effectively attain some charge in doped systems and become visible in photoelectron and inverse photoelectron spectroscopies. This shows that the description of a doped system by an extended Hubbard model differs substantially from that of a simple Hubbard model. Longer range Coulomb interactions cause satellites in the one electron removal and addition spectra and the appearance of spectral weight if the gap of doped systems at energies corresponding to the excitons of the undoped systems. The spectral weight of the satellites is proportional to the doping times the coordination number and therefore is strongly dependent on the dimension.Comment: 10 pages revtex, 5 figures ps figures adde

    Single hole dynamics in dimerized spin liquids

    Full text link
    The dynamics of a single hole in quantum antiferromagnets is influenced by magnetic fluctuations. In the present work we consider two situations. The first one corresponds to a single hole in the two leg t-J spin ladder. In this case the wave function renormalization is relatively small and the quasiparticle residue of the S=1/2 state remains close to unity. However at large t/J there are higher spin (S=3/2,5/2,..) bound states of the hole with the magnetic excitations, and therefore there is a crossover from quasiparticles with S=1/2 to quasiparticles with higher spin. The second situation corresponds to a single hole in two coupled antiferromagnetic planes very close to the point of antiferromagnetic instability. In this case the hole wave function renormalization is very strong and the quasiparticle residue vanishes at the point of instability.Comment: 12 pages, 3 figure

    Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion

    Full text link
    Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the formation of periodic nano-twins with twin planes predominantly along the direction. Nano-twinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudo-tetragonal structure towards the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudo-tetragonal structure is found to be nearly constant over a very large range of t. Only films with t > 130 nm show a significant relaxation of the lattice parameters towards values comparable to those of bulk LCO.Comment: 31 pages, 10 figure
    corecore