73 research outputs found
A common goodness-of-fit framework for neural population models using marked point process time-rescaling
A critical component of any statistical modeling procedure is the ability to assess the goodness-of-fit between a model and observed data. For spike train models of individual neurons, many goodness-of-fit measures rely on the time-rescaling theorem and assess model quality using rescaled spike times. Recently, there has been increasing interest in statistical models that describe the simultaneous spiking activity of neuron populations, either in a single brain region or across brain regions. Classically, such models have used spike sorted data to describe relationships between the identified neurons, but more recently clusterless modeling methods have been used to describe population activity using a single model. Here we develop a generalization of the time-rescaling theorem that enables comprehensive goodness-of-fit analysis for either of these classes of population models. We use the theory of marked point processes to model population spiking activity, and show that under the correct model, each spike can be rescaled individually to generate a uniformly distributed set of events in time and the space of spike marks. After rescaling, multiple well-established goodness-of-fit procedures and statistical tests are available. We demonstrate the application of these methods both to simulated data and real population spiking in rat hippocampus. We have made the MATLAB and Python code used for the analyses in this paper publicly available through our Github repository at https://github.com/Eden-Kramer-Lab/popTRT.This work was supported by grants from the NIH (MH105174, NS094288) and the Simons Foundation (542971). (MH105174 - NIH; NS094288 - NIH; 542971 - Simons Foundation)Published versio
Integrating Statistical and Machine Learning Approaches to Identify Receptive Field Structure in Neural Populations
Neurons can code for multiple variables simultaneously and neuroscientists
are often interested in classifying neurons based on their receptive field
properties. Statistical models provide powerful tools for determining the
factors influencing neural spiking activity and classifying individual neurons.
However, as neural recording technologies have advanced to produce simultaneous
spiking data from massive populations, classical statistical methods often lack
the computational efficiency required to handle such data. Machine learning
(ML) approaches are known for enabling efficient large scale data analyses;
however, they typically require massive training sets with balanced data, along
with accurate labels to fit well. Additionally, model assessment and
interpretation are often more challenging for ML than for classical statistical
methods. To address these challenges, we develop an integrated framework,
combining statistical modeling and machine learning approaches to identify the
coding properties of neurons from large populations. In order to demonstrate
this framework, we apply these methods to data from a population of neurons
recorded from rat hippocampus to characterize the distribution of spatial
receptive fields in this region
Timing matters: impact of anticonvulsant drug treatment and spikes on seizure risk in benign epilepsy with centrotemporal spikes
OBJECTIVE: Benign epilepsy with centrotemporal spikes (BECTS) is a common, self-limited epilepsy syndrome affecting school-age children. Classic interictal epileptiform discharges (IEDs) confirm diagnosis, and BECTS is presumed to be pharmacoresponsive. As seizure risk decreases in time with this disease, we hypothesize that the impact of IEDs and anticonvulsive drug (ACD) treatment on the risk of subsequent seizure will differ based on disease duration. METHODS: We calculate subsequent seizure risk following diagnosis in a large retrospective cohort of children with BECTS (n = 130), evaluating the impact of IEDs and ACD treatment in the first, second, third, and fourth years of disease. We use a Kaplan-Meier survival analysis and logistic regression models. Patients were censored if they were lost to follow-up or if they changed group status. RESULTS: Two-thirds of children had a subsequent seizure within 2 years of diagnosis. The majority of children had a subsequent seizure within 3 years despite treatment. The presence of IEDs on electroencephalography (EEG) did not impact subsequent seizure risk early in the disease. By the fourth year of disease, all children without IEDs remained seizure free, whereas one-third of children with IEDs at this stage had a subsequent seizure. Conversely, ACD treatment corresponded with lower risk of seizure early in the disease but did not impact seizure risk in later years. SIGNIFICANCE: In this cohort, the majority of children with BECTS had a subsequent seizure despite treatment. In addition, ACD treatment and IEDs predicted seizure risk at specific points of disease duration. Future prospective studies are needed to validate these exploratory findings.Published versio
The problem of perfect predictors in statistical spike train models
https://doi.org/10.51628/001c.27667Published versio
Characterizing the spiking dynamics of subthalamic nucleus neurons in Parkinson's disease using generalized linear models
Accurately describing the spiking patterns of neurons in the subthalamic nucleus (STN) of patients suffering from Parkinson's disease (PD) is important for understanding the pathogenesis of the disease and for achieving the maximum therapeutic benefit from deep brain stimulation (DBS). We analyze the spiking activity of 24 subthalamic neurons recorded in Parkinson's patients during a directed hand movement task by using a point process generalized linear model (GLM). The model relates each neuron's spiking probability simultaneously to factors associated with movement planning and execution, directional selectivity, refractoriness, bursting, and oscillatory dynamics. The model indicated that while short-term history dependence related to refractoriness and bursting are most informative in predicting spiking activity, nearly all of the neurons analyzed have a structured pattern of long-term history dependence such that the spiking probability was reduced 20–30 ms and then increased 30–60 ms after a previous spike. This suggests that the previously described oscillatory firing of neurons in the STN of Parkinson's patients during volitional movements is composed of a structured pattern of inhibition and excitation. This point process model provides a systematic framework for characterizing the dynamics of neuronal activity in STN
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses
This is the publisher's version, also available electronically from http://journal.frontiersin.org/Journal/10.3389/fncom.2014.00031/abstractThe brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience
Network inference - with confidence - from multivariate time series
Networks - collections of interacting elements or nodes - abound in the
natural and manmade worlds. For many networks, complex spatiotemporal dynamics
stem from patterns of physical interactions unknown to us. To infer these
interactions, it is common to include edges between those nodes whose time
series exhibit sufficient functional connectivity, typically defined as a
measure of coupling exceeding a pre-determined threshold. However, when
uncertainty exists in the original network measurements, uncertainty in the
inferred network is likely, and hence a statistical propagation-of-error is
needed. In this manuscript, we describe a principled and systematic procedure
for the inference of functional connectivity networks from multivariate time
series data. Our procedure yields as output both the inferred network and a
quantification of uncertainty of the most fundamental interest: uncertainty in
the number of edges. To illustrate this approach, we apply our procedure to
simulated data and electrocorticogram data recorded from a human subject during
an epileptic seizure. We demonstrate that the procedure is accurate and robust
in both the determination of edges and the reporting of uncertainty associated
with that determination.Comment: 12 pages, 7 figures (low resolution), submitte
Dysmature superficial white matter microstructure in developmental focal epilepsy
Benign epilepsy with centrotemporal spikes is a common childhood epilepsy syndrome that predominantly affects boys, characterized by self-limited focal seizures arising from the perirolandic cortex and fine motor abnormalities. Concurrent with the age-specific presentation of this syndrome, the brain undergoes a developmentally choreographed sequence of white matter microstructural changes, including maturation of association u-fibres abutting the cortex. These short fibres mediate local cortico-cortical communication and provide an age-sensitive structural substrate that could support a focal disease process. To test this hypothesis, we evaluated the microstructural properties of superficial white matter in regions corresponding to u-fibres underlying the perirolandic seizure onset zone in children with this epilepsy syndrome compared with healthy controls. To verify the spatial specificity of these features, we characterized global superficial and deep white matter properties. We further evaluated the characteristics of the perirolandic white matter in relation to performance on a fine motor task, gender and abnormalities observed on EEG. Children with benign epilepsy with centrotemporal spikes (n = 20) and healthy controls (n = 14) underwent multimodal testing with high-resolution MRI including diffusion tensor imaging sequences, sleep EEG recordings and fine motor assessment. We compared white matter microstructural characteristics (axial, radial and mean diffusivity, and fractional anisotropy) between groups in each region. We found distinct abnormalities corresponding to the perirolandic u-fibre region, with increased axial, radial and mean diffusivity and fractional anisotropy values in children with epilepsy (P = 0.039, P = 0.035, P = 0.042 and P = 0.017, respectively). Increased fractional anisotropy in this region, consistent with decreased integrity of crossing sensorimotor u-fibres, correlated with inferior fine motor performance (P = 0.029). There were gender-specific differences in white matter microstructure in the perirolandic region; males and females with epilepsy and healthy males had higher diffusion and fractional anisotropy values than healthy females (P ≤ 0.035 for all measures), suggesting that typical patterns of white matter development disproportionately predispose boys to this developmental epilepsy syndrome. Perirolandic white matter microstructure showed no relationship to epilepsy duration, duration seizure free, or epileptiform burden. There were no group differences in diffusivity or fractional anisotropy in superficial white matter outside of the perirolandic region. Children with epilepsy had increased radial diffusivity (P = 0.022) and decreased fractional anisotropy (P = 0.027) in deep white matter, consistent with a global delay in white matter maturation. These data provide evidence that atypical maturation of white matter microstructure is a basic feature in benign epilepsy with centrotemporal spikes and may contribute to the epilepsy, male predisposition and clinical comorbidities observed in this disorder.K23 NS092923 - NINDS NIH HHSPublished versio
Cognitive Information Processing
Contains research objectives and summary of research on fourteen research projects and reports on four research projects.Joint Services Electronics Program (Contract DAAB07-75-C-1346)National Science Foundation (Grant EPP74-12653)National Science Foundation (Grant ENG74-24344)National Institutes of Health (Grant 2 PO1 GM19428-04)Swiss National Funds for Scientific ResearchM.I.T. Health Sciences Fund (Grant 76-11)National Institutes of Health (Grant F03 GM58698)National Institutes of Health (Biomedical Sciences Support Grant)Associated Press (Grant
- …