611 research outputs found

    The Stellar Mass Evolution of Galaxies in the NICMOS Ultra Deep Field

    Full text link
    We measure the build-up of the stellar mass of galaxies from z=6 to z=1. Using 15 band multicolor imaging data in the NICMOS Ultra Deep Field we derive photometric redshifts and masses for 796 galaxies down to H(AB)=26.5. The derived evolution of the global stellar mass density of galaxies is consistent with previous star formation rate density measurements over the observed range of redshifts. Beyond the observed range, maintaining consistency between the global stellar mass and the observed star formation rate suggests the epoch of galaxy formation was z=16.Comment: 18 pages, 3 figures, submitted to AJ. Data at: http://orca.phys.uvic.ca/~gwyn/MMM/nicmos.htm

    A Testable Solution of the Cosmological Constant and Coincidence Problems

    Full text link
    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ\Lambda, is linked to other observable properties of the universe. This is achieved by promoting the CC from a parameter which must to specified, to a field which can take many possible values. The observed value of Lambda ~ 1/(9.3 Gyrs)^2(approximately10(−120)inPlanckunits)isdeterminedbyanewconstraintequationwhichfollowsfromtheapplicationofacausallyrestrictedvariationprinciple.Whenappliedtoourvisibleuniverse,themodelmakesatestablepredictionforthedimensionlessspatialcurvatureofOmegak0=−0.0056sb/0.5;wheresb 1/2isaQCDparameter.Requiringthataclassicalhistoryexist,ourmodeldeterminestheprobabilityofobservingagivenLambda.TheobservedCCvalue,whichwesuccessfullypredict,istypicalwithinourmodelevenbeforetheeffectsofanthropicselectionareincluded.Whenanthropicselectioneffectsareaccountedfor,wefindthattheobservedcoincidencebetweentLambda=Lambda(−1/2)andtheageoftheuniverse,tU,isatypicaloccurrenceinourmodel.IncontrasttomultiverseexplanationsoftheCCproblems,oursolutionisindependentofthechoiceofapriorweightingofdifferent (approximately 10^(-120) in Planck units) is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible universe, the model makes a testable prediction for the dimensionless spatial curvature of Omega_k0 = -0.0056 s_b/0.5; where s_b ~ 1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Lambda. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t_Lambda = Lambda^(-1/2) and the age of the universe, t_U, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different \Lambda$-values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.Comment: 31 pages, 4 figures; v2: version accepted by Phys. Rev.

    Direct Detection Rates of Dark Matter Coupled to Dark Energy

    Full text link
    We investigate the effect of a coupling between dark matter and dark energy on the rates for the direct detection of dark matter. The magnitude of the effect depends on the strength κ\kappa of this new interaction relative to gravity. The resulting isothermal velocity distribution for dark matter in galaxy halos is still Maxwell-Boltzmann (M-B), but the characteristic velocity and the escape velocity are increased by 1+κ2\sqrt{1+\kappa^2}. We adopt a phenomenological approach and consider values of κ\kappa near unity. For such values we find that: (i) The (time averaged) event rate increases for light WIMPs, while it is somewhat reduced for WIMP masses larger than 100 GeV. (ii) The time dependence of the rate arising from the modulation amplitude is decreased compared to the standard M-B velocity distribution. (iii) The average and maximum WIMP energy increase proportionally to 1+κ21+\kappa^2, which, for sufficiently massive WIMPs, allows the possibility of designing experiments measuring γ\gamma rays following nuclear de-excitation.Comment: 16 pages, 7 figure

    A Method for Individual Source Brightness Estimation in Single- and Multi-band Data

    Full text link
    We present a method of reliably extracting the flux of individual sources from sky maps in the presence of noise and a source population in which number counts are a steeply falling function of flux. The method is an extension of a standard Bayesian procedure in the millimeter/submillimeter literature. As in the standard method, the prior applied to source flux measurements is derived from an estimate of the source counts as a function of flux, dN/dS. The key feature of the new method is that it enables reliable extraction of properties of individual sources, which previous methods in the literature do not. We first present the method for extracting individual source fluxes from data in a single observing band, then we extend the method to multiple bands, including prior information about the spectral behavior of the source population(s). The multi-band estimation technique is particularly relevant for classifying individual sources into populations according to their spectral behavior. We find that proper treatment of the correlated prior information between observing bands is key to avoiding significant biases in estimations of multi-band fluxes and spectral behavior, biases which lead to significant numbers of misclassified sources. We test the single- and multi-band versions of the method using simulated observations with observing parameters similar to that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio

    Galaxy Satellites and the Weak Equivalence Principle

    Full text link
    Numerical simulations of the effect of a long-range scalar interaction (LRSI) acting only on nonbaryonic dark matter, with strength comparable to gravity, show patterns of disruption of satellites that can agree with what is seen in the Milky Way. This includes the symmetric Sagittarius stellar stream. The exception presented here to the Kesden and Kamionkowski demonstration that an LRSI tends to produce distinctly asymmetric streams follows if the LRSI is strong enough to separate the stars from the dark matter before tidal disruption of the stellar component, and if stars dominate the mass in the luminous part of the satellite. It requires that the Sgr galaxy now contains little dark matter, which may be consistent with the Sgr stellar velocity dispersion, for in the simulation the dispersion at pericenter exceeds virial. We present other examples of simulations in which a strong LRSI produces satellites with large mass-to-light ratio, as in Draco, or free streams of stars, which might be compared to "orphan" streams.Comment: 14 pages, accepted for publication in PR

    Core Collapse via Coarse Dynamic Renormalization

    Full text link
    In the context of the recently developed "equation-free" approach to computer-assisted analysis of complex systems, we extract the self-similar solution describing core collapse of a stellar system from numerical experiments. The technique allows us to side-step the core "bounce" that occurs in direct N-body simulations due to the small-N correlations that develop in the late stages of collapse, and hence to follow the evolution well into the self-similar regime.Comment: 5 pages, 3 figure

    The Power of General Relativity

    Get PDF
    We study the cosmological and weak-field properties of theories of gravity derived by extending general relativity by means of a Lagrangian proportional to R1+δR^{1+\delta}. This scale-free extension reduces to general relativity when δ→0\delta \to 0. In order to constrain generalisations of general relativity of this power class we analyse the behaviour of the perfect-fluid Friedmann universes and isolate the physically relevant models of zero curvature. A stable matter-dominated period of evolution requires δ>0\delta >0 or δ<−1/4\delta <-1/4. The stable attractors of the evolution are found. By considering the synthesis of light elements (helium-4, deuterium and lithium-7) we obtain the bound −0.017<δ<0.0012.-0.017<\delta <0.0012. We evaluate the effect on the power spectrum of clustering via the shift in the epoch of matter-radiation equality. The horizon size at matter--radiation equality will be shifted by ∼1\sim 1% for a value of δ∼0.0005.\delta \sim 0.0005. We study the stable extensions of the Schwarzschild solution in these theories and calculate the timelike and null geodesics. No significant bounds arise from null geodesic effects but the perihelion precession observations lead to the strong bound δ=2.7±4.5×10−19\delta =2.7\pm 4.5\times 10^{-19} assuming that Mercury follows a timelike geodesic. The combination of these observational constraints leads to the overall bound 0≤δ<7.2×10−190\leq \delta <7.2\times 10^{-19} on theories of this type.Comment: 26 pages and 5 figures. Published versio

    Computational capacity of the universe

    Full text link
    Merely by existing, all physical systems register information. And by evolving dynamically in time, they transform and process that information. The laws of physics determine the amount of information that a physical system can register (number of bits) and the number of elementary logic operations that a system can perform (number of ops). The universe is a physical system. This paper quantifies the amount of information that the universe can register and the number of elementary operations that it can have performed over its history. The universe can have performed no more than 1012010^{120} ops on 109010^{90} bits.Comment: 17 pages, TeX. submitted to Natur

    Ly-alpha Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field South

    Full text link
    We describe the results of an extremely deep, 0.28 deg^2 survey for z = 3.1 Ly-alpha emission-line galaxies in the Extended Chandra Deep Field South. By using a narrow-band 5000 Anstrom filter and complementary broadband photometry from the MUSYC survey, we identify a statistically complete sample of 162 galaxies with monochromatic fluxes brighter than 1.5 x 10^-17 ergs cm^-2 s^-1 and observers frame equivalent widths greater than 80 Angstroms. We show that the equivalent width distribution of these objects follows an exponential with a rest-frame scale length of w_0 = 76 +/- 10 Angstroms. In addition, we show that in the emission line, the luminosity function of Ly-alpha galaxies has a faint-end power-law slope of alpha = -1.49 +/- 0.4, a bright-end cutoff of log L^* = 42.64 +/- 0.2, and a space density above our detection thresholds of 1.46 +/- 0.12 x 10^-3 h70^3 galaxies Mpc^-3. Finally, by comparing the emission-line and continuum properties of the LAEs, we show that the star-formation rates derived from Ly-alpha are ~3 times lower than those inferred from the rest-frame UV continuum. We use this offset to deduce the existence of a small amount of internal extinction within the host galaxies. This extinction, coupled with the lack of extremely-high equivalent width emitters, argues that these galaxies are not primordial Pop III objects, though they are young and relatively chemically unevolved.Comment: 45 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics

    Full text link
    Standard formulae of classical electromagnetism for the forces between electric charges in motion derived from retarded potentials are compared with those obtained from a recently developed relativistic classical electrodynamic theory with an instantaneous inter-charge force. Problems discussed include small angle Rutherford scattering, Jackson's recent `torque paradox' and circular Keplerian orbits. Results consistent with special relativity are obtained only with an instantaneous interaction. The impossiblity of stable circular motion with retarded fields in either classical electromagnetism or Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded electromagnetic forces. See also physics/0501130. V2 has typos corrected, minor text modifications and updated references. V3 has further typos removed and added text and reference
    • …
    corecore