11 research outputs found

    The differential absorption of a series of P-glycoprotein substrates in isolated perfused lungs from Mdr1a/1b genetic knockout mice can be attributed to distinct physico-chemical properties: an insight into predicting transporter-mediated, pulmonary specific disposition

    Get PDF
    Purpose To examine if pulmonary P-glycoprotein (P-gp) is functional in an intact lung; impeding the pulmonary absorption and increasing lung retention of P-gp substrates administered into the airways. Using calculated physico-chemical properties alone build a predictive Quantitative Structure-Activity Relationship (QSAR) model distinguishing whether a substrate’s pulmonary absorption would be limited by P-gp or not. Methods A panel of 18 P-gp substrates were administered into the airways of an isolated perfused mouse lung (IPML) model derived from Mdr1a/Mdr1b knockout mice. Parallel intestinal absorption studies were performed. Substrate physico-chemical profiling was undertaken. Using multivariate analysis a QSAR model was established. Results A subset of P-gp substrates (10/18) displayed pulmonary kinetics influenced by lung P-gp. These substrates possessed distinct physico-chemical properties to those P-gp substrates unaffected by P-gp (8/18). Differential outcomes were not related to different intrinsic P-gp transporter kinetics. In the lung, in contrast to intestine, a higher degree of non-polar character is required of a P-gp substrate before the net effects of efflux become evident. The QSAR predictive model was applied to 129 substrates including eight marketed inhaled drugs, all these inhaled drugs were predicted to display P-gp dependent pulmonary disposition. Conclusions Lung P-gp can affect the pulmonary kinetics of a subset of P-gp substrates. Physico-chemical relationships determining the significance of P-gp to absorption in the lung are different to those operative in the intestine. Our QSAR framework may assist profiling of inhaled drug discovery candidates that are also P-gp substrates. The potential for P-gp mediated pulmonary disposition exists in the clinic

    Development of a small molecule that corrects misfolding and increases secretion of Z α1 -antitrypsin.

    Get PDF
    Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency

    Discovery of potent, orally bioavailable, selective 5-HT1A/B/D receptor antagonists

    No full text
    5-HT1 receptor antagonists have been discovered with good selectivity over the 5-HT transporter. This is the first report of highly potent, selective ligands for the 5-HT1A/B/D receptors with low intrinsic activity, which represent a useful set of molecules for further understanding the roles of the 5-HT1 receptor subtypes and providing new approaches,for the treatment of depression

    Studies on a series of potent, orally bioavailable, 5-HT1 receptor ligands-Part II

    No full text
    A series of 5-( piperidinylethyloxy) quinoline 5-HT1 receptor ligands have been studied by elaboration of the series of dual 5-HT1-SSRIs reported previously. These new compounds display a different in vitro pharmacological pro. le with potent affinity across the 5-HT1A, 5-HT1B and 5-HT1D receptors and selectivity against the serotonin transporter. Furthermore, they have improved pharmacokinetic profiles and CNS penetration

    Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors

    No full text
    The human intestinal absorption of 241 drugs was evaluated. Three main methods were used to determine the human intestinal absorption: bioavailability, percentage of urinary excretion of drug-related material following oral administration, and the ratio of cumulative urinary excretion of drug-related material following oral and intravenous administration. The general solvation equation developed by Abraham's group was used to model the human intestinal absorption data of 169 drugs we considered to have reliable data. The model contains five Abraham descriptors calculated by the ABSOLV program. The results show that Abraham descriptors can successfully predict human intestinal absorption if the human absorption data is carefully classified based on solubility and administration dose to humans

    The efficacy of antenatal steroid therapy is dependent on the duration of low-concentration fetal exposure: evidence from a sheep model of pregnancy

    No full text
    BACKGROUND: Antenatal corticosteroids are among the most important and widely used interventions to improve outcomes for preterm infants. Antenatal corticosteroid dosing regimens remain unoptimized and without maternal weight-adjusted dosing. We, and others, have hypothesized that, once a low concentration of maternofetal steroid exposure is achieved and maintained, the duration of the steroid exposure determines treatment efficacy. Using a sheep model of pregnancy, we tested the relationship among steroid dose, duration of exposure, and treatment efficacy. OBJECTIVE: The study was conducted to investigate the relative importance of duration and magnitude of fetal corticosteroid exposure to mature the preterm fetal ovine lung. STUDY DESIGN: Ewes with single fetuses at 120 days gestation received an intravenous bolus (loading dose) followed by a maintenance infusion of betamethasone phosphate to target 12-hour fetal plasma betamethasone concentrations of (1) 20 ng/mL, (2) 10 ng/mL, or (3) 2 ng/mL. In a subsequent experiment, fetal plasma betamethasone concentrations were targeted at 2 ng/mL for 26 hours. Negative control animals received sterile saline solution. Positive control animals received 2 intramuscular injections of 0.25 mg/kg Celestone Chronodose (betamethasone phosphate thorn betamethasone acetate) spaced at 24 hours. Preterm lambs were delivered surgically and ventilated 48 hours after treatment commenced. Maternal and fetal plasma betamethasone concentrations were confirmed by mass spectrometry in a parallel study of chronically catheterized, corticosteroid-treated ewes and fetuses. RESULTS: The loading and maintenance doses were achieved and maintained the desired fetal plasma betamethasone concentrations of approximately 20, 10, and 2 ng/mL for 12 hours. Compared with the 12-hour infusion-treated animals, lambs from the positive control (2 intramuscular doses of 0.25 mg/kg Celestone Chronodose) group had the greatest functional lung maturation (compliance, gas exchange, arterial pH) and molecular evidence of maturation (glucocorticoid receptor signaling activation), despite having maximum fetal plasma betamethasone concentrations 2.5 times lower than animals in the 20 ng/mL betamethasone infusion group. Lambs from the 12-hour 2-ng/mL betamethasone infusion group had little functional lung maturation. In contrast, lambs from the 26-hour 2-ng/mL betamethasone infusion group had functional lung maturation equivalent to lambs from the positive control group. CONCLUSION: In preterm lambs that were exposed to antenatal corticosteroids, high maternofetal plasma betamethasone concentrations did not correlate with improved lung maturation. The largest and most consistent improvements in lung maturation were in animals that were exposed to either the clinical course of Celestone Chronodose or a lowdose betamethasone phosphate infusion to achieve a fetal plasma betamethasone concentration of approximately 2 ng/mL for 26 hours. The duration of low-concentration maternofetal steroid exposure, not total dose or peak drug exposure, is a key determinant for antenatal corticosteroids efficacy. These findings underscore the need to develop an optimized steroid dosing regimen that may improve both the efficacy and safety of antenatal corticosteroids therapy

    Development of a small molecule that corrects misfolding and increases secretion of Z α1‐antitrypsin

    No full text
    Abstract Severe α1‐antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1‐antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA‐encoded chemical library to undertake a high‐throughput screen to identify small molecules that bind to, and stabilise Z α1‐antitrypsin. The lead compound blocks Z α1‐antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1‐antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1‐antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that “mutation ameliorating” small molecules can block the aberrant polymerisation that underlies Z α1‐antitrypsin deficiency
    corecore