21 research outputs found
Indirectly Pumped 3.7 THz InGaAs/InAlAs Quantum-Cascade Lasers Grown by Metal-Organic Vapor-Phase Epitaxy
Device-performances of 3.7 THz indirect-pumping quantum- cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested
Recommended from our members
High Performance Quantum Cascade Lasers Based on Three-Phononresonance Design
A quantum cascade laser structure based on three-phonon-resonance design is proposed and demonstrated. Devices, emitting at a wavelength of 9 μm, processed into buried ridge waveguide structures with a 3 mm long, 16 μm wide cavity and a high-reflection (HR) coating have shown peak output powers of 1.2 W, slope efficiencies of 1 W/A, threshold current densities of 1.1 kA/cm2, and high wall-plug efficiency of 6% at 300 K. A 3 mm long, 12 μm wide buried-heterostructure device without a HR coating exhibited continuous wave output power of as high as 65 mW from a single facet at 300 K.Engineering and Applied Science
Semiconductor Lasers With Integrated Plasmonic Polarizers
The authors reported the plasmonic control of semiconductor laser polarization by means of metallic gratings and subwavelength apertures patterned on the laser emission facet. An integrated plasmonic polarizer can project the polarization of a semiconductor laser onto other directions. By designing a facet with two orthogonal grating-aperture structures, a polarization state consisting of a superposition of a linearly and right-circularly polarized light was demonstrated in a quantum cascade laser; a first step toward a circularly polarized laser.Engineering and Applied Science
Recommended from our members
Deformed Microcavity Quantum Cascade Lasers with Directional Emission
We report the experimental realization of deformed microcavity quantum cascade lasers (QCLs) with a Limaçon-shaped chaotic resonator. Directional light emission with a beam divergence of from QCLs emitting at λ ≈ 10µm was obtained in the plane of the cavity for deformations in the range 0.37 < ε < 0.43. An excellent agreement between measured and calculated far-field profiles was found. Both simulations and experiments show that the Limaçon-shaped microcavity preserves whispering gallery-like modes with high Q-factors for low deformations (ε < 0.50). In addition, while the measured spectra show a transition from whispering gallery-like modes to a more complex mode structure at higher pumping currents, we observed ‘universal far-field behavior’ for different intracavity mode distributions in the Limaçon microcavity, which can be explained by the distribution of unstable manifolds in ray optics simulations. Furthermore, the performance of the deformed microcavity lasers is robust with respect to variations of the deformation near its optimum value ε = 0.40, which implies that this structure reduces the requirements on photolithography fabrication. The successful realization of these microcavity lasers may lead to applications in optoelectronics.Engineering and Applied Science
Recommended from our members
Multi-Beam Multi-Wavelength Semiconductor Lasers
Multibeam emission and spatial wavelength demultiplexing in semiconductor lasers by patterning their facets with plasmonic structures is reported. Specifically, a single-wavelength laser was made to emit beams in two directions by defining on its facet two metallic gratings with different periods. The output of a dual-color laser was spatially separated according to wavelength by using a single metallic grating. The designs can be integrated with a broad range of active or passive optical components for applications such as interferometry and demultiplexing.Physic
Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses
Using ultrashort laser pulses, terahertz (THz) emission from InAs thin films grown on Si substrates is investigated. Results show that the measured radiation in transmission geometry exhibits an enhancement of the low frequency components and the strongest emission is from the thickest 520 nm film. Comparison of the emission from a 520 nm film and of bulk GaAs in reflection geometry reveals that the main THz radiation mechanism is the photo-Dember effect. Moreover, comparing the emission from bulk InAs, the thin films can also be categorized as strong THz emitters