426 research outputs found

    Photon polarization entanglement induced by biexciton: experimental evidence for violation of Bell's inequality

    Get PDF
    We have investigated the polarization entanglement between photon pairs generated from a biexciton in a CuCl single crystal via resonant hyper parametric scattering. The pulses of a high repetition pump are seen to provide improved statistical accuracy and the ability to test Bell's inequality. Our results clearly violate the inequality and thus manifest the quantum entanglement and nonlocality of the photon pairs. We also analyzed the quantum state of our photon pairs using quantum state tomography.Comment: 4 pages, 5 figure

    Quantum diffraction and interference of spatially correlated photon pairs and its Fourier-optical analysis

    Full text link
    We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns.Comment: 10 pages, 13 figures, rev.

    Regulatory effects of blood constituents on the function and metabolism of the cat brain in perfusion ezperiments. Brain perfusion with artificial blood containing low molecular dextran and amino acids

    Get PDF
    As a link in a series of studies on the effects of blood constituents on the brain function by means of brain perfusion, we used four kinds of artificial blood; namely, the blood containing a low molecular dextran, one containing glutamic acid, one containing essential amino acid group and the one containing both essential amino acid group and glutamic acid. During the perfusion experiments we observed the effects of blood constituents on the function and metabolism of the perfused brain and obtained the following results. 1. When a low molecular dextran is used as the colloid osmotic pressure agent instead of hydrodextran, the amount of the blood flow in the brain is maintained roughly at a certain fixed level throughout the experiment, showing no gradual decreasing tendency. 2. When using the artificial blood supplemented with glutamic acid, EEG of the perfused brain shows an increase in the appearance rate of &#946;32 and &#946;33 bands, approaching closely to the pattern of EEG of unrestrained controls at arousal state. 3. In the case of the blood added with essential amino acids similar to the case using the blood with glutamic acid, EEG approaches towards the alert pattern of the controls. 4. When the perfusion is done with the artificial blood lacking in amino acids, about one hour after the start of the perfusion the amount of glutamic acid and its related compounds in the brain can no longer be maintained at normal level and the decrease, being so marked, brings about a marked decrease also in total amino acid content. 5. When the perfusion blood contains glutamic acid, essential amino acid group or both, the concentrations of amino acids of the brain glutamic acid group and the total amino acid can be maintained approximately at normal level for the duration of over one hour.</p
    corecore