9,432 research outputs found

    A Two Hour Quasi-Period in an Ultra-luminous X-Ray source in NGC628

    Full text link
    Quasi-periodic oscillations and X-ray spectroscopy are powerful probes of black hole masses and accretion disks, and here we apply these diagnostics to an ultraluminous X-ray source (ULX) in the spiral galaxy NGC628 (M74). This object was observed four times over two years with the Chandra X-ray Observatory and XMM-Newton, with three long observations showing dramatic variability, distinguished by a series of outbursts with a quasi-period (QPO) of 4,000-7,000 seconds. This is unique behavior among both ULXs and Galactic X-ray binaries due to the combination of its burst-like peaks and deep troughs, its long quasi-periods, its high variation amplitudes of >90>90%, and its substantial variability between observations. The X-ray spectra is fitted by an absorbed accretion disk plus a power-law component, suggesting the ULX was in a spectral state analogous to the Low Hard state or the Very High state of Galactic black hole X-ray binaries. A black hole mass of ∼2\sim2--20×103M⊙20\times10^3 M_\odot is estimated from the fbf_b--M∙M_\bullet scaling relation found in the Galactic X-ray binaries and active galactic nuclei.Comment: 12 pages, 3 figures. accepted for publication in ApJ Lette

    Measurements of Magnetic Field Penetration in Superconducting Materials for SRF Cavities

    Get PDF
    Superconducting radiofrequency (SRF) cavities used in particle accelerators operate in the Meissner state. To achieve high accelerating gradients, the cavity material should stay in the Meissner state under high RF magnetic field without penetration of vortices through the cavity wall. The field onset of flux penetration into a superconductor is an important parameter of merit of alternative superconducting materials other than Nb which can enhance the performance of SRF cavities. There is a need for a simple and efficient technique to measure the onset of field penetration into a superconductor directly. We have developed a Hall probe experimental setup for the measurement of the flux penetration field through a superconducting sample placed under a small superconducting solenoid magnet which can generate magnetic fields up to 500 mT. The system has been calibrated and used to measure different bulk and thin film superconducting materials. This system can also be used to study SIS multilayer coatings that have been proposed to enhance the vortex penetration field in Nb cavities

    Evaluation of Anisotropic Magnetoresistive (AMR) Sensors for a Magnetic Field Scanning System for SRF Cavities

    Get PDF
    One of the significant causes of residual losses in superconducting radio-frequency (SRF) cavities is trapped magnetic flux. The flux trapping mechanism depends on many factors that include cool-down conditions, surface preparation techniques, and ambient magnetic field orientation. Suitable diagnostic tools are not yet available to quantitatively correlate such factors’ effect on the flux trapping mechanism. A magnetic field scanning system (MFSS) consisting of AMR sensors, fluxgate magnetometers, or Hall probes is recently commissioned to scan the local magnetic field of trapped vortices around 1.3 GHz single-cell SRF cavities. In this contribution, we will present results from sensitivity calibration and the first tests of AMR sensors in the MFSS

    EIC Crab Cavity Multipole Analysis

    Get PDF
    Crab cavities are specialized RF devices designed for colliders targeting high luminosities. It is a straightforward solution to retrieve head-on collision with crossing angle existing to fast separate both beams after collision. The Electron Ion Collider (EIC) has a crossing angle of 25 mrad, and will use local crabbing to minimize the dynamic aperture requirement throughout the rings. The current crab cavity design for the EIC lacks axial symmetry. Therefore, their higher order components of the fundamental deflecting mode have a potential of affecting the long-term beam stability. We present here the multipole analysis and preliminary particle tracking results from the current crab cavity design

    Estimates of Damped Equilibrium Energy Spread and Emittance in a Dual Energy Storage Ring

    Get PDF
    A dual energy storage ring design consists of two loops at markedly different energies. As in a single-energy storage ring, the linear optics in the ring design may be used to determine the damped equilibrium emittance and energy spread. Because the individual radiation events in the two rings are different and independent, we can provide analytical estimates of the damping times in a dual energy storage ring. Using the damping times, the values of damped energy spread, and emittance can be determined for a range of parameters related to lattice design and rings energies. We present analytical calculations along with simulation results to estimate the values of damped energy spread and emittance in a dual energy storage ring. We note that the damping time tends to be dominated by the damping time of the high energy ring in cases where the energy of the high energy rings is significantly greater than that of the low energy ring

    On the role of magnetic reconnection in jet/accretion disk systems

    Full text link
    The most accepted model for jet production is based on the magneto-centrifugal acceleration out off an accretion disk that surrounds the central source (Blandford & Payne, 1982). This scenario, however, does not explain, e.g., the quasi-periodic ejection phenomena often observed in different astrophysical jet classes. de Gouveia Dal Pino & Lazarian (2005) (hereafter GDPL) have proposed that the large scale superluminal ejections observed in microquasars during radio flare events could be produced by violent magnetic reconnection (MR) episodes. Here, we extend this model to other accretion disk systems, namely: active galactic nuclei (AGNs) and young stellar objects (YSOs), and also discuss its role on jet heating and particle acceleration.Comment: To be published in the IAU Highlights of Astronomy, Volume 15, XXVII IAU General Assembly, August 2009, Ian F. Corbett et al., eds., 201

    Beam Dynamics Study in a Dual Energy Storage Ring for Ion Beam Cooling*

    Get PDF
    A dual energy storage ring designed for beam cooling consists of two closed rings with significantly different energies: the cooling and damping rings. These two rings are connected by an energy recovering superconducting RF structure that provides the necessary energy difference. In our design, the RF acceleration has a main linac and harmonic cavities both running at crest that at first accelerates the beam from low energy E_{L} to high energy E_{H} and then decelerates the beam from E_{H} to E_{L} in the next pass. The purpose of the harmonic cavities is to extend the bunch length in a dual energy storage ring as such a longer bunch length may be very useful in a cooling application. Besides these cavities, a bunching cavity running on zero-crossing phase is used outside of the common beamline to provide the necessary longitudinal focusing for the system. In this paper, we present a preliminary lattice design along with the fundamental beam dynamics study in such a dual energy storage ring

    The Stress Transmission Universality Classes of Periodic Granular Arrays

    Full text link
    The transmission of stress is analysed for static periodic arrays of rigid grains, with perfect and zero friction. For minimal coordination number (which is sensitive to friction, sphericity and dimensionality), the stress distribution is soluble without reference to the corresponding displacement fields. In non-degenerate cases, the constitutive equations are found to be simple linear in the stress components. The corresponding coefficients depend crucially upon geometrical disorder of the grain contacts.Comment: 7 pages, 1 figur

    Nb\u3csub\u3e3\u3c/sub\u3eSn Coating of Twin Axis Cavity for Accelerator Applications

    Get PDF
    A Superconducting twin axis cavity consisting of two identical beam pipes that can accelerate and decelerate beams within the same structure has been proposed for the Energy Recovery Linac (ERL) applications. There are two niobium twin axis cavities at JLab fabricated with the intention of later Nb₃Sn coating and now we are progressing to coat them using vapor diffusion method. Nb₃Sn is a potential alternate material for replacing Nb in SRF cavities for better performance and reducing operational costs. Because of advanced geometry, larger surface area, increased number of ports and hard to reach areas of the twin axis cavities, the usual coating approach developed for typical elliptical single-axis cavities must be evaluated and requires to be adjusted. In this contribution, we report the first results from the coating of a twin axis cavity and discuss current challenges with an outlook for the future
    • …
    corecore