1,768 research outputs found
Using Serious Games in Higher Education: Reclaiming the Learning Time
Today's technology provides learners with full control of when, where and how they will access the learning material. Although the advantages are apparent , there are also some “side-effects”. One of them is that the “learning time” is not explicitly defined anymore. It is the design of the learning application that should consider for this, reclaim the learning time and create the necessary conditions for the “learning momentum”. The aim of this paper is to present a serious game that has been created for Law students at the University of Westminster, London, and to discuss the cognitive processes it activates. Serious games aim to teach students, using techniques from the game industry. Gamified elements are used alongside educational theories. The game presented here is a simulation of a tutorial that teaches the “Law of murder”. Students are presented with a case, they are asked to apply the law and decide if this is a murder or not. During the game the main principle of “learning by doing” is applied. One of the objectives of the game is to make students to focus on the topic and make the best use of the “learning momentum”
Conductance fluctuations and boundary conditions
The conductance fluctuations for various types for two-- and
three--dimensional disordered systems with hard wall and periodic boundary
conditions are studied, all the way from the ballistic (metallic) regime to the
localized regime. It is shown that the universal conductance fluctuations (UCF)
depend on the boundary conditions. The same holds for the metal to insulator
transition. The conditions for observing the UCF are also given.Comment: 4 pages RevTeX, 5 figures include
Evaluating the impact of multimodal Collaborative Virtual Environments on user’s spatial knowledge and experience of gamified educational tasks
Several research projects in spatial cognition have suggested Virtual Environments (VEs) as an effective way of facilitating mental map development of a physical space. In the study reported in this paper, we evaluated the effectiveness of multimodal real-time interaction in distilling understanding of the VE after completing gamified educational tasks. We also measure the impact of these design elements on the user’s experience of educational tasks. The VE used reassembles an art gallery and it was built using REVERIE (Real and Virtual Engagement In Realistic Immersive Environment) a framework designed to enable multimodal communication on the Web. We compared the impact of REVERIE VG with an educational platform called Edu-Simulation for the same gamified educational tasks. We found that the multimodal VE had no impact on the ability of students to retain a mental model of the virtual space. However, we also found that students thought that it was easier to build a mental map of the virtual space in REVERIE VG. This means that using a multimodal CVE in a gamified educational experience does not benefit spatial performance, but also it does not cause distraction. The paper ends with future work and conclusions and suggestions for improving mental map construction and user experience in multimodal CVEs
Intelligent Based Terrain Preview Controller for a 3-axle Vehicle
Presented at 13th International Symposium on Advanced Vehicle Control, AVEC'16; Munich 13-16/09/2016The paper presents a six-wheel half longitudinal model and the design of a dual level control architecture. The first (top) level is designed using a Sugeno fuzzy inference feedforward architecture with and without preview. The second level of controllers are locally managing each wheel for each axle. As the vehicle is moving forward the front wheels and suspension units will have less time to respond when compared to the middle and rear units, hence a preview sensor is used to compensate. The paper shows that the local active suspensions together with the Sugeno Fuzzy, (locally optimised using subtractive clustering), Feedforward control strategy is more effective and this architecture has resulted in reducing the sprung mass vertical acceleration and pitch accelerations
A methodology for full-system power modeling in heterogeneous data centers
The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener-
alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft
The use of a cyber campus to support teaching and collaboration: An observation approach
The research reported in this paper is work in progress describing the experiences of the authors while using a cyber campus to support online learn- ing collaborative activities and investigate if a Transactive Memory System can be developed among group members, working together within a cyber campus in several pre-set tasks
Effect of hydrogen adsorption on the quasiparticle spectra of graphene
We use the non-interacting tight-binding model to study the effect of
isolated hydrogen adsorbates on the quasiparticle spectra of single-layer
graphene. Using the Green's function approach, we obtain analytic expressions
for the local density of states and the spectral function of hydrogen-doped
graphene, which are also numerically evaluated and plotted. Our results are
relevant for the interpretation of scanning tunneling microscopy and
angle-resolved photoemission spectroscopy data of functionalized graphene.Comment: 4 pages, 3 figures, minor corrections to tex
- …